ORACLE

Al agent observability
and evaluation

A built-in framework to measure, evaluate, trace, report, and
observe agent quality and performance in Oracle Al Agent Studio ,’ ’ /

/
- o~
:/’ -

Table of contents

Why your Al agent needs a robust evaluation framework............ccooeeeeeeeecccnnnen. 3
Agent quality: The next challenge for enterprise Al........ooceeeeeeceeeeececeeee e 5
Introducing the Al agent observability and evaluation framework......................... 6
A2 18 = o o SRS 7
Y T T 1T = 9
EValuation data SEtS ...ttt e 9
A practical, five-step process for evaluating Al agents..........ccooeeeeeeeeceeeceeceenenee. 10
1= Tt =S 1
Reporting and observability.......... e 12
The Oracle Al Agent difference: Observability & Evaluation ..o 13

(oY @ T Tal [ot o 1 o 1<) o U 14

Why your Al agent needs
a robust evaluation framework

For high-value enterprise Al applications, an embedded framework for rigorously
evaluating and improving agent performance can make the difference between
successful production deployments and endless cycles of prototyping. In this guide,
you will learn how the observability and evaluation framework brings automated
measurement, evaluation, tracing, reporting, and observability capabilities to
Oracle Al Agent Studio, an easy-to-use, no-code toolkit that helps you deliver
accurate, performant Al solutions. You will also learn a practical, five-step process
for evaluating agents that you can put to work in your organization.

Al agent observability and evaluation

Agent quality: The next challenge for enterprise Al

As enterprise Al moves from prototypes to production-grade assistants and autonomous agents, the
guestion is no longer, can we build an agent? but, can we trust it to perform accurately, reliably, and
cost-effectively at scale?

Al agents are becoming deeply embedded in enterprise workflows, augmenting tasks normally
performed by humans—sometimes even fully automating business processes. Oracle Al Agent
Studio enables users to create Al agents that are goal-driven and can plan, decide, and act to help
meet their objectives. These agents are dynamic, autonomous and adaptive, and are powered by
sophisticated language and reasoning models. But at their core, they are nondeterministic, and,
unlike traditional software, these Al agents don’t follow a predetermined path of execution.

Testing Al agents is different than testing software

- An agent’s response can vary based on model updates or prompt changes. There could be
hallucinations, something that traditional software has never dealt with.

« “Correctness” is seldom binary; answers must be judged for semantic alignment, relevance,
completeness, and clarity.

- Agents have complex execution paths and often with multi-step execution and delegation of
work to other agents; they interpret natural language intent, call tools (internal and external),
and query documents. All of these can be sources of erroneous behavior that need to be
traced.

- Content safety requirements, such as toxicity, bias, Pll, prompt injection, and regulatory
expectations evolve over time, necessitating continuous monitoring, auditing, and
explainability.

Al agent observability and evaluation

Traditional QA testing mechanisms fall short in these areas. The difficulty of testing Al agents is

not a matter of degree, but of kind. The problem of evaluating and monitoring Al agent quality and
performance shifts from verifying a fixed process to validating safe, reliable, and accurate behavior of
an adaptive system. To address these realities, Oracle Al Agent Studio provides built-in observability
and evaluation features, including a cohesive, built-in framework that helps teams design, test,
deploy, and continuously improve Al agents end to end. These capabilities unify design-time
evaluation, detailed step-by-step agent execution tracing, and runtime operational monitoring

in a single experience.

Oracle Al Agent Studio provides built-in observability
and evaluation features, including a cohesive, built-in
framework that helps teams design, test, deploy, and
continuously improve Al agents end to end

Al agent observability and evaluation

Introducing the Al agent observability
and evaluation framework

The integrated capabilities in Oracle Al Agent Studio enable the following:

- Measurement: Consistent capture of quality, performance, and cost metrics for
prompts and agents

- Evaluation: Design-time test authoring and automated runs across versions with
outputs and configurable thresholds

- Tracing: Step-by-step introspection of agent sessions and turns, including tool calls,
LLM calls, latency, tokens, and errors, for fast root-cause analysis

- Reporting: Drill-down dashboards and history views for prompts and agents, comparison
of evaluation runs, and leaderboard-style summaries

- Observability: Production-grade monitoring with filters, time windows, and latency/error

FP

Al agent observability and evaluation

Evaluation

Design-time quality and safety, operationalized

Oracle’s evaluation capability supports rigorous, repeatable offline testing before deployment. Teams
define evaluation sets that pair inputs with expected answers/outputs and specify which metrics to
compute. Evaluation runs can be targeted to specific versions, such as draft versus published agents
or seeded versus overridden prompts.

Key capabilities:

Evaluation data set management

Author test cases for agents (questions and expected responses)
Upload reference evaluation sets in bulk, edit, and rerun as agents evolve

Associate data sets with a target agent and select metrics to calculate and
specify pass/fail thresholds

Al agent observability and evaluation

LLM-as-a-judge (Laal) correctness

Automated semantic scoring and explanation of correctness relative to
answers using a specialized judge large language model (LLM) with
optional human annotations where needed

Runs and results

Execute runs against specific versions; view run-level summaries for
median correctness, median latency, tokens, and errors

Drill down to inspect individual test cases, agent responses, and metrics,
including correctness, latency, token counts, and error flags

Highlight regressions with threshold-driven pass/fail indicators and, when
useful, show differences between actual versus expected outputs

A/B comparisons

Perform side-by-side comparisons of two runs of the same evaluation set
to quantify changes in correctness, latency, token costs, and error behavior

Metrics available in evaluation
Quiality: Correctness (LaaJ-based rating) and pass count/rate
Performance: Latency (median, P99) and errors (API call timeouts)

Cost: Prompt/input tokens, output tokens, total token consumption,
median, and P99 token counts

Usage (where applicable): Turns (agents) and LLM calls (prompts)

Al agent observability and evaluation

LLM-as-a-judge

Scaling semantic quality assessment

Traditional unit tests struggle with open-ended language outputs. This is addressed by Laal, a
principled methodology that uses an independent judge LLM to score semantic correctness against
expected answers.

- Teams define expected answers/outputs in evaluation sets.

« During runs, the judge LLM scores each response’s semantic alignment and provides a
correctness metric on a 0-1scale as well as an explanation of its scoring rationale. Human
evaluators can adjust the rating, if needed, and add a score/explanation as appropriate, for
example, audits.

- Aggregated correctness, such as median, becomes a key signal in run summaries and
comparisons.

- Using Laal brings many, varied benefits. LaaJ scales quality measurement across large test
suites without exhaustive human review so evaluations can be done in languages that have
less human oversight. And Laal provides a nuanced assessment that better reflects user-
perceived quality than exact-match metrics.

Standardizing test assets and metrics and enabling automated, version-aware runs helps reduce
subjective debate about “quality” and makes evaluation a routine engineering practice. The
combination of Laal scoring, latency/cost measurement, and run comparisons provides an evidence-
based pathway to Al agent design and iterative improvements.

Evaluation data sets

An essential ingredient

To ensure successful evaluations, it is important that evaluation data sets are designed to stress-test
agent capabilities. Test cases should be chosen to represent a broad range of inputs from the target
audience and diversity in languages, grammar, and verbosity. They should exercise full coverage of
all the agent’s functional elements as well as adversarial attacks, edge cases, and failure cases. The
observability and evaluation framework’s automation and management features make it easy to
create, run, and analyze the results of extensive evaluation data sets.

Al agent observability and evaluation

A practical, five-step process for evaluating Al agents

Organizations can adopt the following five-step process to operationalize
Al agent evaluations:

Define goals and metrics
« Clarify the business problem the agent is solving
« Establish success criteria, for example: resolution rates or customer satisfaction

. Translate these criteria into measurable metrics

2 Build a representative data set
« Develop test cases that mirror real-world scenarios

« Include both “happy path” and “unhappy path” scenarios, for example: ambiguous,
adversarial, or out-of-scope queries

3 Conduct the evaluation
« Run the agent against the data set, capturing responses, reasoning, and tool usage

« Apply a mix of automated and human evaluation techniques

il Analyze and interpret results
- Determine thresholds for acceptable performance
- Identify failure patterns, such as misinterpreted intent or incorrect tool usage

- Aggregate results and benchmark against success criteria

5 Iterate and refine
- Treat evaluation as cyclical
« Use insights to improve prompts, structure, or tool integration

+ Retest updated agents to confirm measurable improvements

Tracing

Deep transparency for debuggability and trust

When production issues arise—or when teams are hardening an agent’s design—observability must
go deeper than aggregates. Tracing offers step-level introspection for single prompts and multi-step
agents, allowing developers and operators to analyze execution flow, identify bottlenecks, confirm
enforcement, and diagnose errors.

Agent execution tracing

« Overall summary: Start time, end-to-end latency, errors, token totals, and (for evaluation)
correctness. Shows input question and final response for sessions.

- Interactive timeline: Chronological visualization of steps (worker agents, LLM calls, and tools,
such as business objects, REST, document/RAG, calculator, session, email, and deep link).
Each step displays type, timing, duration, and status; clicking a step reveals details.

- Agent steps: Prompt text, topics/instructions, latency, API failure descriptions, and token
metrics; input/output shown in evaluation runs.

« LLM calls: Latency, error details, and tokens; input/output visible in evaluation runs.

- Tools: Per-tool inputs/outputs and failure descriptions; for RAG, show retrieved chunks and
sources; for REST/business objects, show functions, parameters, and payloads
(evaluation runs).

Tracing closes the gap between “what happened” and “why it happened.” Showing execution details
enables transparency. The agent explains itself by showing its inner workings. Tracing makes agent
reasoning and tool orchestration auditable and accelerates root-cause analysis.

Al agent observability and evaluation

Reporting and observability

Operate with confidence in production

Once agents are deployed, leaders need an operational picture to manage SLAs, budgets, and risk
across product families and products. Monitoring dashboards and history views provide a centralized
command center for usage, performance, cost, quality (evaluation), and signals for prompts and
agents.

Metrics dashboard

- Aggregate across all product families/products by default; filter by family, product, and time
window, from last day to last three months.

- Leaderboards and lists: Prompts and agents ranked by usage; dedicated list and execution
history views with filtering, sorting, and pagination; drill down to traces for investigations.

Observability transforms anecdotes into action. With rollups, leaderboards, filters, and drill-down
histories, teams can spot outliers, track improvements, and allocate optimization efforts where they
pay off while maintaining continuous visibility into cost posture.

Al agent observability and evaluation 12

The Oracle Al Agent difference:
Observability & Evaluation

Purpose-built for agents

Observability and evaluation capabilities address the full complexity of multi-step agent
workflows—supervisors, worker agents, prompts, tool calls, and RAG—rather than
treating everything as a single LLM call.

D One framework, full lifecycle
From managing evaluation data sets and running comparisons to production
dashboards and deep traces, these capabilities unify design-time and runtime needs
with consistent metrics and interface.

E] Cost as first-class citizens
Content care, prompt injection flags, and token economics live alongside correctness
and latency in the Ul, metrics, and traces—not as afterthoughts.

[:] Enterprise-grade visibility
Filters by product family/product, rich time windows, leaderboards, and execution
histories help large organizations operationalize SLAs and budgets across portfolios.

Al agent observability and evaluation

How Oracle can help

Al agents demand a new standard of engineering discipline. With Oracle Al
Agent Studio’s observability and evaluation framework, teams can gain the
built-in capabilities required to design, test, deploy, and continuously improve
the reliability and efficiency of Al agents. Evaluation sets and LLM-as-a-judge
scoring raise preproduction quality. Tracing unlocks deep transparency and
rapid root-cause analysis. And dashboards deliver the operational observability
enterprises need. This integrated approach makes Oracle Al Agent Studio a
robust, comprehensive, industry-leading solution for building and launching Al
agents that meets real-world expectations for accuracy, performance, and total
cost of ownership —at Oracle scale and with Oracle-grade governance.

Request a demo Learn more

Connect with us
Call +1.800.0RACLE1 or visit oracle.com

Outside North America, find your local office at oracle.com/contact

Copyright © 2025, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and
conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either
directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior
written permission. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

https://www.oracle.com/
https://www.oracle.com/corporate/contact/
https://www.oracle.com/applications/demo/
https://www.oracle.com/applications/fusion-ai/ai-agents/
https://www.oracle.com/applications/fusion-ai/ai-agents/
https://www.oracle.com/applications/demo/

	Button 6:
	Button 5:

