

Implementing DevOps
principles with Oracle
Database
September 2025, Version 1.3
Copyright © 2025, Oracle and/or its affiliates
Public

2 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Purpose statement
This document provides an overview of modern application development principles in the context of Oracle
Database. It is intended solely to help you assess the business benefits of changing your application development
workflow to deploy code changes in an automated fashion. Due to the almost infinite number of permutations
possible in development practices, this tech brief should be interpreted as a list of suggestions and best practices.
Concrete adoption always depends on your requirements, skills, processes, etc.

The intended audience comprises developers, architects, and managers leading teams that use Oracle Database
as part of the database estate. While every effort has been made to make this document as accessible as possible,
a basic understanding of the Oracle Database is needed to take full potential of this tech brief.

The overarching topic discussed in this paper, DevOps, is far more complex to give it justice in this tech brief.
Additional references, listed where appropriate, allow you to explore specific areas of interest in more detail.

3 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Table of contents

Introduction 6
Towards a Modern Software Development Workflow 6
Implementing Continuous Integration 7
Continuous Delivery and Deployment 9
Attributes of Continuous Integration and Delivery 10

Version Control 10
Fast Feedback Loops 10
Automated Testing 10
Small and Frequent Changes 11
Automated Deployment 11

The Influence of Artificial Intelligence on Software Development 12
Summary 12

Using Version Control Systems 13
No CI/CD without the use of a version control system! 13
Getting the team’s buy-in to using a version control system 13
Introduction to Git 13

Git Terminology 14
Branching and Merging 14
Pull and Merge Requests 14
Forking a Project 15
Your Database Project’s Git Repository 15

Release Management 18
Integrating with the Continuous Integration Pipeline 18
Summary 18

Ensuring Repeatable, Idempotent Schema Migrations 19
Benefits of using Dedicated Schema Migration Tools 19
Using SQLcl and Liquibase to deploy Schema Migrations 19

Liquibase Terminology and Basic Concepts 20
Practical Aspects of Creating the Database Changelog 20
Checking the status of your deployments 23

Summary 24
Efficient and Quick Provisioning of Test Databases 25

Autonomous Database 25
Use an Oracle Exadata Database Service on Exascale Infrastructure 26
Using Container Images 27

Using container images with Podman or Docker 28
Using Container Images with Kubernetes 29

Using Container Databases 30
Creating a new, empty Pluggable Database 30
Cloning an existing Pluggable Database 31

4 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Automating Pluggable Database Lifecycle Management 31
Using block-device Cloning Technology 32
Using Copy-on-Write Technology 32
Using Schema Provisioning 32
Summary 32

Writing effective CI/CD Pipelines 34
Introduction to CI/CD Pipelines 34
CI Pipeline Stages 35
CI Pipeline Jobs 36
Ensuring Code Quality 36

Linting 36
Unit Testing 37
Performance Testing 37

Deployment 38
Updating the CI database 39
Summary 39

Performing Schema Changes Online 40
Deploying to Production with Confidence 40
Avoiding outages, however brief they might be 40
Online operations 40
Creating Indexes Online 40
Introducing partitioning to an existing, non-partitioned table 41
Compressing a segment online 41
Adding Columns to Tables 42
Using Online Table Redefinition to Change Table Structures Online 42
Next-level Availability: Edition-Based Redefinition 45

EBR Concepts 45
Adoption Levels 46
Potential Workflows 46

Summary 47
Bibliography 48
Glossary 48

5 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

List of figures

Figure 1 Greatly simplified view of a CI setup 8
Figure 2: Directory layout using SQLcl projects 17
Figure 3: Advantages of using Liquibase to deploy schema changes 19
Figure 4. Liquibase changelog, changeset and change type explained 20
Figure 5: Screenshot showing VSCode and SQLcl project init/project
export commands 21
Figure 6: Automatic updates to the Liquibase changelog 22
Figure 7: Cutting a release using the project release command 23
Figure 8: Installing the release in a database schema 24
Figure 9: Database container image repositories on Oracle’s container
registry 28
Figure 10: Conceptual diagram of the Oracle Database container
database architecture 30
Figure 11: Example of a successful pipeline execution in GitLab 34
Figure 12: Example of a merge pipeline in GitLab 35

6 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Introduction
Anyone in the market providing software services to its customers has felt pressure to innovate and improve the
software development process. The competition is never asleep, and most companies in this highly competitive
field simply cannot afford not to move at the same pace in delivering new innovations.

Releasing new features frequently can be a challenge if lead times are (too) long. In many cases, this is due to a
low cadence of software release cycles. When it was acceptable to release new functionality once every quarter or
less, the release process was rarely automated, resulting in Database Administrators (DBAs) applying changes to
production at night or on weekends while other administrators were busy rolling out changes to the middle tier.

Apart from the theoretical problems on release day, a lot of potentially time-consuming and error-prone human
intervention was necessary to resolve typical problems associated with the crafting of a new release, such as:

 Merging many long-running feature branches into the release (or main) branch.

 Collecting all changes required for a software release.

 Creating the actual software release, especially when it involves a database.

 Performing meaningful integration/acceptance/performance tests prior to going-live.

Database applications often have not enjoyed the same level of attention to automation as frontend applications.
Building immutable artefacts that run identically everywhere has been a mainstay of the software industry for
more than a decade, thanks to a revolution triggered by containerisation technologies.

Many developers have tried to compensate for the perceived shortcomings with their backend data store by
moving functionality typically belonging to databases into their applications. This is not a satisfactory solution
since it tends to mask or postpone the problems inevitably following, such as:

 Issues with data governance.

 Data quality can be negatively impacted if the application isn’t used to enter data.

 Scalability might suffer as the workload increases, especially in the case of very chatty applications.

 Maintenance of extra application functionality that is already built into the database.

 Duplication of extra application functionality across different applications that is already provided by the
database.

Automation of database application deployments is still in its infancy in many software projects. Too often,
changes to the database, from now on referred to as database releases, are created outside a version control
repository. In the worst case, such database releases may consist of several scripts combined in a ZIP file shared
via email, executed manually on a database during a downtime window.

This process – although it might be proven over time – does not scale well with the requirement to release
features more often. There is also a high risk of deploying changes without any traceability of which changes have
occurred when and done by whom. This issue is amplified for systems using multiple deployment tiers such as
test, acceptance test, staging, and other pre-production environments.

If your application is subject to fast release cycles, there is no practical alternative to automation. As a welcome
side effect automation can also lower the cognitive burden on the database professional handling the database
release.

Towards a Modern Software Development Workflow
Rather than following a workflow featuring many long-lived branches with the associated problems during the
merge phase, a different approach might be necessary if release frequencies are to improve.

Nicole Forsgren et al. published groundbreaking research in their well-known Accelerate: The Science Behind
Devops: Building and Scaling High-Performing Technology Organizations book (Forsgren, et al., 2018). Since then,

7 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

the DORA State of DevOps report, containing findings from thousands of individuals, has been published
annually.

One of the key messages from the report is that high-performing teams deploy code more frequently, quicker,
and with fewer errors than their peers. They also recover faster from incidents.

Key metrics to keep in mind include the following:

 Lead Time for Changes

 Mean Time to Recovery

 Deployment Frequency

 Change Failure Rate

 Reliability

The 2024 State of DevOps Report concludes that “elite performers deploy code 182 times more frequently per
year, enjoy a 127x faster lead time from commit to deploy, 2293x faster time to recover from incidents, and 8x
lower change failure rate” than low performers.

This is remarkable because, for a long time, the industry believed that frequent releases must certainly come at
the expense of quality. This has proven not to be the case if done right. The following sections explain tools and
methods for improving code quality.

The aforementioned book has identified Continuous Integration/Continuous Delivery (CI/CD) as a key
component for successfully deploying code.

Continuous Integration is a process where code changes are automatically tested against the existing code base
with every change having been committed in a version control system (VCS) like Git.

Automating the Continuous Integration of your software is based on the following pre-requisites:

 All code must be subjected to version control using tools like Git.

 The focus must be on small, incremental changes (“work in small batches”).

 Integration tests must be performed frequently to your main branch to ensure your changes can merge
successfully rather than letting them sit in a feature branch for days or weeks.

 Formatting and syntax checking must be automated after the team(s) have agreed on coding standards.

 Tests are an essential part of the software project and must pass before deployment to higher-tier
environments. No code should be added without a corresponding test, known as “Test-Driven
Development” (TDD). See (Beck, 2002) for more details about Test-Driven Development.

Adopting a culture where everything is done via a version control system (VCS) like Git might require a significant
change by the team. Readers interested in a book consciously deprioritising the technical aspects of
implementing DevOps principles can refer to (Freeman, 2019). Initially, there might be scepticism and even
resistance, but the rewards are worth overcoming the teething problems.

Implementing Continuous Integration
There are many tools available to support teams with Continuous Integration (CI). The central piece of the
architecture is undoubtedly the CI server. It coordinates task execution, shows the results on a dashboard, and
often provides a method to manage and track software issues. When running tests, the CI server usually enlists
the help of auxiliary infrastructure like a CI database, credential helpers like vaults and keystores, and Kubernetes
clusters or Container Engine runtimes as target platforms.

Tools and software for organising your project such as Kanban, Scrum, Jira, etc. are outside the scope of this tech
brief. You and your team should agree on a naming convention for your project that can help you map code to
tickets, user stories, and the like.

https://dora.dev/research/2024/dora-report/

8 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

The following paragraphs serve as an introduction to the topic of Continuous Integration. This tech brief provides
more details later and references additional reading material on the subject.

Figure 1 depicts a greatly simplified Continuous Integration environment in Oracle Cloud Infrastructure (OCI):

Figure 1 Greatly simplified view of a CI setup

The CI pipeline is a central element maintained by the CI server. In software projects, pipelines often have multiple
stages, such as lint, build, test, and deploy. Each stage is further subdivided into jobs.

The lint stage typically includes linting, additional code coverage, and security vulnerability checks. It may also
perform a secret detection step. The build phase typically involves building an artefact like a Java Archive, Go
Program, or, more generically, a container image. In the context of database applications, the build phase often
comprises the temporary creation of a CI environment, automatic deployment of schema changes, and the
execution of unit and/or integration tests. If all these tests pass, advanced pipelines accumulate all the changes
deployed into an archive, too, and store it in an artefact repository ready for deployment.

The CI database plays an essential role in this context. Unlike local development environments found on
developers’ machines shown to the left in Figure 1, access to the CI database is regulated. Ideally, the CI database
contains the current “live” software branch. As part of the CI pipeline’s execution, the CI database is duplicated,
with the clone being the target of the new software changes. This way, tests and potential problems with the
current code iteration won’t negatively affect others. After the successful deployment, the CI database clone is
discarded. In the rare cases where deployments fail, the CI database clone can be preserved for troubleshooting.

A new commit and push to the remote source code repository typically triggers the execution of the CI pipeline.
One of the central paradigms of CI is the rule to “always keep the pipeline green”. This refers to the pipeline’s
status as indicated by a “traffic light” symbol on the dashboard: if the build fails for any reason (red status),
developers must scramble to fix the error to avoid interrupting the workflow for others.

CI pipelines are often defined in YAML or other domain-specific languages. It is recommended that the CI server
you choose for your project(s) allows you to store the textual representation of your pipeline along the source
code in your version control system. This goes back to the principle that everything in your project is version-
controlled.

9 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

The following snippet is an excerpt of a CI pipeline as used in GitLab:

--- global variables

variables:
 TAG_NAME: "t$CI_COMMIT_SHORT_SHA"
 CI_PDB_NAME: "CIPDB"
 CLONE_PDB_NAME: "t$CI_COMMIT_SHORT_SHA"

stages:
- linting
- build
- test
- deploy

--- lingting stage

lint_python:
 stage: linting
 image: pythontools:1.2
 script:
 - cd src/python
 - pylint **/*.py
 - flake src/python
 tags:
 - docker

static_code_analysis:
 stage: linting
 script:
 - /path/to/a/code/analysis/tool
 tags:
 - shell

security_scan:
 stage: linting
 script:
 - /path/to/a/vulnerability/scanner
 tags:
 - shell

... additional steps

Continuous Delivery and Deployment
Many software projects take Continuous Integration a step further by delivering the fully tested, deployment-
ready artefact to another tier, like User Acceptance Testing (UAT), staging, or even production, provided all tests
in the integration pipeline have passed. A pipeline is in use again; this time, however, it’s referred to as a
deployment pipeline.

The line between Continuous Delivery and Deployment (CD) is frequently drawn based on the degree of
automation. With Continuous Deployment, it is assumed that a build goes straight to production, provided it
passes all the checks and tests. Continuous Delivery is very similar, except that the actual deployment is
triggered by a human being, e.g. release management, rather than done automatically by the pipeline. Without
Continuous Delivery, one cannot have Continuous Deployment.

10 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

It should be noted that Continuous Deployment is challenging to implement, even for stateless applications. It
requires a lot of commitment, resources, training, and a robust testing framework to push each change
confidently to production.

Attributes of Continuous Integration and Delivery
A few key principles of CI/CD merit a closer investigation in the context of this paper.

Version Control
As you read earlier, it’s impossible to implement automation of testing and deployment of applications without
version control. Apart from being a requirement for all kinds of automation, there are numerous other advantages
to using a version control system, such as:

 Enabling a distributed workflow with multiple developers.

 Powerful conflict resolution tools.

 Being able to trace application changes back in time.

 Comparing code before/after a specific deployment/milestone/commit.

 Code is automatically backed up when pushed to the central code repository.

The VCS system is critical to the infrastructure and must be set up in a fault-tolerant way. Should access to the
VCS be down, vital parts of the automation pipeline will fail, preventing any changes from being made to
production.

Chapter 2 details the use of Git as a version control system. Anyone new to Git should consult the excellent “Pro
Git” (Chacon, et al., 2014) book. It is also freely available online under the Creative Commons Attribution Non
Commercial Share Alike 3.0 license.

Fast Feedback Loops
One of the issues inherent with long software project lead times is the absence of feedback until it is often too
late. It is not hard to imagine a case where two teams work on their respective features in separate branches for
weeks on end. When the time comes to integrating these two branches into the main branch, it is not uncommon
to see merge conflicts. Given the time passed, the number of conflicting changes in each branch can take a long
time to resolve, delaying the release unnecessarily.

Rather than spending weeks before difficulties are detected, it might be easier to combine changes from
different branches more frequently. Research such as the DORA report has shown that intra-day commits,
combined with succinct pieces of work, are a very effective way of mitigating merge conflicts. Trunk-Based
development takes this concept to the next level by mandating intra-day commits to the main branch. You can
read more about this interesting approach in (Hammant). Even if you do not commit daily, the principles of
Continuous Integration imply frequent integration runs.

Fast feedback loops are also often referred to when it comes to pipeline execution. If it takes too long for a
pipeline to run, developers might get frustrated with the process and might start circumventing the use of the
pipeline. This is a big “No” in CI as it has a severe impact on the code quality. DevOps engineers must, therefore,
ensure that the pipeline execution runtimes remain short. This can be challenging, especially when the
provisioning of a test database is part of the pipeline execution.

You can read more about creating test environments in Efficient and Quick Provisioning of Test Databases later in
this tech brief. Various options for providing an Oracle Database environment to the CI pipeline are covered so
that linting, code coverage and unit/system/integration tests can be completed in the shortest time possible for
your project’s CI pipeline execution.

Automated Testing
Integrating code frequently is one step towards a higher release frequency. However, you cannot have confidence
in your application if all you did was to test if the code merges (and compiles) without errors. Only testing the

11 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

deployed application can ensure the new functionality works as expected. Developers embracing Test-Driven
Development (TDD) know that each new piece of functionality in the application code must be accompanied by a
series of tests. Even if you don’t follow the TDD paradigm strictly, you should consider providing unit tests with
each new function you add to your codebase. Unit tests alone cannot protect the code from all failures; you
probably want to invest in integration testing, too, even if you have a very high code coverage.

Small and Frequent Changes
The risk of introducing bugs tends to be proportional to the size of the change. A major change that hasn’t been
merged into the main branch for weeks carries a larger risk of creating merge conflicts than a small change that’s
been merged within a few hours, for example.

Merge conflicts in this context directly influence the team’s ability to ship a feature: until the merge conflict is
resolved, the feature cannot go live. The idea behind CI/CD, however, is to have the software in a ready state at
any time so that it can be deployed at the drop of a hat. It’s best to be prepared should the hat drop at an
unforeseen moment.

The introduction of AI-based coding has re-introduced the problem of creating too large a change: it is tempting
to the let a Large Language Model (LLM) write a sizeable chunk of code and submit it to the Git repository. Care
must be taken not to let this change in the way software is written introduce problems with software quality
assurance best practices.

Refined development techniques, such as Trunk-Based Development, might help teams to deliver small,
incremental changes more safely. Trunk-based development recommends committing frequently to the main
branch, perhaps even multiple times per day, therefore avoiding the creation of long-lived branches and their
related problems. (Hammant) offers a good introduction to the topic.

Automated Deployment
Database migrations are best performed automatically. Many tools exist for this purpose, and Oracle
recommends Oracle SQL Developer Command Line (SQLcl). It has strong support for Oracle’s technology stack,
both on-premises and in the cloud, simplifying many common CI/CD tasks.

You can create deployment artefacts for databases just as you do for your applications. If you wish to follow this
approach, you can use SQLcl. Creating an immutable deployment artefact as part of the CI pipeline’s execution
further increases confidence in the release. This has been true for container images as much as for a database
release.

Regardless of whether you create a dedicated deployment artefact or execute scripts in your database release as
they are, the changes your software engineers implemented need to be deployed to a target environment.
Typically, you find there is a need to deploy at least twice in database projects:

1. Deployment to a (clone of the) CI database.

2. Deployment to a higher tier, including production.

You frequently find additional tiers between the CI database and production, each resembling the live
environment closer. This doesn’t come as a surprise; the above is true for any software project.

For a project to be successful with CI/CD, the deployment mechanism must be identical, no matter what
environment you are deploying against. The deployment must also be repeatable in a safe manner. In other
words, the environments must be so similar – or ideally identical – that a new deployment does not result in errors
not detected during the CI phase. In environments where a lot of administrative work is manually performed,
there is a high risk that a deployment to a development environment has almost no resemblance to acceptance
test, integration, or even production environments and are very likely to fail, which is particularly aggravating
when it happens in production.

The cloud offers help through Infrastructure as Code (IaC): Tools like Terraform and Ansible make creating and
maintaining identical environments much easier. If necessary, cloud backups can be restored quickly, reducing

https://www.oracle.com/database/sqldeveloper/technologies/sqlcl/

12 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

the time needed to provision database clones. Tools such as Flyway and Liquibase are great for deploying
database changes.

Chapter 3 discusses how to create repeatable, idempotent deployments of database schema migrations.

The Influence of Artificial Intelligence on Software
Development
Artificial Intelligence is no longer “on the horizon”, it has become pervasive for organisations and individuals. Both
groups are increasingly integrating Artificial Intelligence (AI) to their workflows, enhancing process and
productivity. The 2024 DORA report offers detailed insights into the adoption of AI in software development,
noting that developers primarily use AI to write and optimize code, understand unfamiliar sections of codebases,
and generate or update documentation. Some respondents to the DORA survey also reported using AI tools for
code reviews and debugging.

Large Language Models (LLMs) can generate software based on user input, which may be provided in various
formats, including natural language. With the introduction of the Model Context Protocol (MCP), development
workflows have become even more agentic, enabling generative AI (GenAI) solutions that operate through
prompt-driven interactions.

Oracle provides an MCP server that integrates with many popular IDEs (as MCP client). This allows users to
leverage prompt-based interactions with LLMs to work directly with the database. However, this capability brings
certain risks. Please consult the SQLcl documentation for information on potential risks and mitigation strategies.

Currently, AI-powered tools are not yet widely used in CI pipelines. As the technology matures, adoption is
expected to increase. Research indicates that properly implemented AI can improve code and documentation
quality within teams.

For a comprehensive overview of findings, please refer to the 2024 DORA report.

While AI presents significant opportunities in software development, it is essential to remain vigilant about
security and data privacy. The use of AI can potentially expose confidential information, intellectual property, or
other regulated data—especially when combined with MCP-driven agentic workflows. Such scenarios may cause
real harm to applications or databases. Always ensure compliance with your organization’s policies and relevant
regulations when using AI in your development processes.

Summary
Many database-centric application projects are handled differently compared to stateless software projects. This
paper aims to change this situation by introducing the benefits of automation, source code control, and modern
development and deployment techniques. The following chapters dive deeper into the various aspects, from
using version control systems to deploying database schema changes using migration tools in CI/CD pipelines.

The rise of AI-assisted development, and the quality of generative-AI for development had a profound effect over
the last years. The speed of innovation is breathtaking, and keeping up with the current trends is difficult.
Nevertheless there is a promise that GenAI services can help boost productivity, enhance the quality of
documentation, and lead to better development flow and ultimately job satisfaction. Since there are too many AI-
based development workflows available for developers to choose from, and most of these don’t apply to the
CI/CD stage of the development process this paper will be updated in the future once clear patterns emerge.

As always when using AI tools, great care must be taking to prevent leaking of sensitive information.

https://dora.dev/research/2024/
https://docs.oracle.com/en/database/oracle/sql-developer-command-line/25.2/sqcug/using-oracle-sqlcl-mcp-server.html
https://dora.dev/research/2024/

13 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Using Version Control Systems
This section covers version control systems (VCS), notably Git, the most common version control system at the
time of writing.

No CI/CD without the use of a version control system!
You read in the previous chapter that a CI (Continuous Integration) server is a central part of the automation
architecture, coordinating the execution of scripts, tests, and all other operations via so-called pipelines. Almost
all CI servers expect source code to be provided in a Git repository.

You must store your code in a version control system to develop a CI/CD pipeline!

Subjecting your project’s source code to version control is the first step towards automating your development
and potentially deployment processes. In this chapter, you can read about the various options available.

Getting the team’s buy-in to using a version control system
Traditionally, (frontend) developers and database administrators (DBAs) have been part of separate teams. While
the separation has been kept up for a long time, the approach is less suitable for more modern development
models. In fact, it hasn’t been for quite a while.

Rather than developers throwing their application code over the proverbial fence for the DBAs to deploy, better
methods can and should be used. The DevOps movement embraces cooperation between developers (the “dev”
in DevOps) and operations (“ops”). Although DevOps is perhaps more of a change in culture than technology,
introducing a new style of cooperation typically entails automating processes that previously were performed
manually. That is where CI comes back into play.

Introducing a version control system requires everyone working on the project to share their contributions in a
VCS repository. That can imply greater visibility of an individual’s contributions, something not everyone might be
comfortable with. Project members reluctant to work with VCS can be convinced by pointing out the benefits of
VCS, including (but not limited to):

 Recording a file’s history from the time it was added to the repository up to now.

 The ability to revert to a previous, well-known state.

 Visibility of each code change.

 Enabling distributed workflows.

 Powerful conflict resolution.

 Protection from data loss when using a central repository.

 Much better developer experience compared to storing files locally on a computer or network file share.

For any team pursuing the use of CI/CD pipelines, there is practically no alternative to using VCS. This message
works best if conveyed gently, taking the concerns of team members on board and offering support, training and
mentoring to those unfamiliar with Git. You could even go so far as to appoint a “Git Champion” to act as a central
point of contact until everyone is comfortable with the new way of working. Interesting aspects of how DBAs and
developers can change the way they work together are presented in (Campbell, et al., 2017).

Introduction to Git
Git is a distributed version control system with a proven track record. Its primary purpose is to allow developers to
work on a software project concurrently. It supports many different workflows and techniques and - crucially -
helps the team track changes over time. It is also very efficient, storing only those files that have changed in a
commit. Git works best with text files; binary files are less suitable for storing in Git. It is also an industry best-
known method not to store anything created as part of the build, such as Java JAR files (commonly referred to as

14 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

build artefacts), in Git. Adding the artefact to the repository adds unnecessary redundancy because it can easily be
recreated at any time from any version of the source code.

Git has many features contributing to a great developer experience. In addition to the command line interface, all
major Integrated Development Environments (IDE) support Git out of the box.

Git Terminology
Your project’s files are part of a (software) repository. In addition to your project’s files, the repository contains the
meta information required for Git to function correctly. That includes internal data and configuration information,
such as a list of files to ignore, local branch information, and so forth.

It is imperative NOT to commit sensitive information such as passwords or secure access tokens in Git!

Git can operate on local and remote repositories. The local repository is typically cloned from a centrally hosted Git
Server such as GitLab, GitHub, Gitea, BitBucket, or any other system in your organisation. Developers use the local
copy to make changes before uploading (“pushing”) them to the central (“remote”) repository.

All files in a repository are associated with a branch. Branch names are arbitrary; most projects follow their own
nomenclature. Conventionally, main is considered to be the stable branch, although no rule enforces that name.
Branching is one of the core features in Git, but excessive branching has been found to cause problems; see below
for a more detailed discussion.

Files newly added to the repository start out as untracked files. Existing files that haven’t been edited yet are said
to be unmodified. Changes to files in the directory aren’t automatically saved to the repository. New files must be
added to the repository first, whilst changed files must be staged by adding them to the staging area. Once files
are added or staged, they can be committed to the project.

After the commit is complete, all the files part of it have their status reset to unmodified.

Each commit requires you to add a commit message. The message is an essential commit attribute: ideally, it
conveys the nature of the change as precisely and succinct as possible. Here is an example of a useful commit
message:

(issue #51): extend column length of t1.c1 to 50 characters

Good commit messages help tremendously to understand the commit history. Some teams raise the stakes by
requiring semantic Git commit messages. Adding chore to the commit message for example could indicate that
the change is so simple that a full-blown CI pipeline execution isn’t necessary. Fixing typos in the documentation,
for example, could be tagged that way. Such an approach requires agreement between developers not to abuse
the mechanism to circumvent the CI pipeline execution. This approach is documented in the Conventional
Commits specification and elsewhere.

Branching and Merging
Branching and merging, both resource- and time-intensive processes with previous generations of VCSs, are no
longer an area of concern with Git. At least not from a technical point of view.

Recent research, such as the DORA Report, indicates that extensive branching will likely lead to hard-to-resolve
and time-consuming merge conflicts, potentially introducing a significant delay that prevents you from releasing
changes faster. Small, incremental changes allow organisations to release far more frequently. Taken to the
extreme, some models propose using a single branch or trunk against which developers submit their code. This
approach is known as Trunk-Based Development.

Once a feature is ready, developers typically create a Pull Request (PR)/Merge Request (MR) to merge their
feature into the main branch.

Pull and Merge Requests
Originally, Pull Requests (GitHub) and Merge Requests (GitLab) weren’t part of Git. They have been introduced as
part of the hosted development platform and have enjoyed widespread adoption.

https://www.conventionalcommits.org/
https://www.conventionalcommits.org/

15 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

These aim to notify the maintainer of a given branch of the submission of a new feature or hotfix. Metadata
associated with the request typically involves a description of the problem, links to a collaboration tool, and
various other workflow details. Most importantly, all the commits from the source branch and all the files changed
in it are listed, allowing everyone to assess the impact and comment on the changes.

Code Reviews are often performed based on Merge Requests, especially in open-source projects (see below).
There is much debate over the use of mandatory code reviews. Opponents suggest not having them reduces lead
time to merge into main, while proponents state that code quality would suffer too much if there aren’t any
reviews. You need to decide for yourself, based on the team, which method to follow.

Forking a Project
Forking is less common in in-house software development projects than with Open-Source Software (OSS). OSS
encourages contributions to the code, but for obvious reasons, these contributions need to undergo a lot of
scrutiny before they can be merged.

In other words, regular users don’t have write privileges on publicly hosted software projects. To overcome this
limitation, developers wishing to contribute to the project create a copy, or a fork, in their own namespace and
modify it as if it were the public repository. Once changes are ready to be integrated back into the original project,
a Pull Request (GitHub) or Merge Request (GitLab) is created.

Project maintainers can then review the contributions and either merge them or request further changes or
enhancements or reject the contributions. Once the contributions have been merged, the contributor’s fork
becomes redundant and can be archived, deleted or synced with the original project repository for future
contributions.

Your Database Project’s Git Repository
As with every aspect of the software development lifecycle, spending some time thinking about the future before
starting the implementation pays off. Mistakes made early in the project’s lifespan can prove costly and complex
to resolve later on. This is true for the choice of project directory layout, too.

Single Repository vs Separate Frontend and Backend Repositories
There is an ongoing discussion in the developer community about whether application code like your Angular,
React, or any other frontend technology should coexist with database change code inside a single repository. For
most modern applications, especially those following the micro-services pattern, it makes a lot of sense to include
frontend and backend code in the same repository.

For existing, complex software projects, especially those where the database is accessed by a multitude of
applications, creating a separate Git repository just for the database might be more suitable. There is a risk of
introducing delay in the release cadence if the application and database repositories are separate: backend
changes required by the application might not be incorporated in time, causing delay unless mitigating strategies
are used. More details about refactoring database code safely can be found in (Ambler, et al., 2006).

This tech brief was written under the assumption that developers own both the frontend and backend, therefore
combining both the user interface and the database schema changes in a single repository.

Directory Structure
When it comes to your database project’s directory structure, the file layout choice matters a lot. It primarily
depends on the method used for deploying changes:

 Migration-based approach (“delta” or “increment” method)

 State-based approach (“snapshot” method)

Using a migration-based approach, developers deploy their changes based on the expected state of the
database schema. Assuming a change at t0 deployed a table in the schema, the following database change uses
the ALTER TABLE statement to modify the table. Schema migration is a continuous process where one change
depends on the previous one.

16 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

The advantage of using a migration-based approach is that any state in the application can be reproduced by
playing changes forward from a known state. It is also very easy to modify existing schema objects because their
existence is guaranteed. However, this advantage is often cited as a problem, especially when many changes need
to be applied. The migration tool must ensure all changes are consistently applied, halting the process whenever
an error occurs.

Using a state-based approach, developers declare the target state, such as a table's structure. The deployment
tool assesses the table's current state and creates a set of changes on the fly to transition it to the target state.

This state-based method has limitations when renaming existing database schema objects. Unless further
declarative logic is provided, a deployment tool cannot assess whether a table column has been renamed or
added. Developers often write additional manual code to ensure that a column is renamed properly and no data
loss occurs. The deployment tool must be able to produce the correct delta when comparing the schema as it
exists with what the developers intend to be present, or else problems will arise later.

If you don’t want to concern yourself with the intricacies of a directory layout for your database changes, you can
use SQLcl to guide you. The following sections describe both the directory layout as well as the process used by
SQLcl projects.

Beginning with Oracle SQLcl release 24.3, Oracle provides an opinionated framework for laying out your
directory. You can see a typical project layout in Figure 2:

17 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Figure 2: Directory layout using SQLcl projects

Using the SQLcl project command relieves you of many manual tasks you previously had to handle. It uses
Liquibase, a popular schema migration toolkit under the covers, to track schema changes and their deployments.
It also handles staging changes, crafting releases, and generating a deployment artefact if you require one. And it
integrates nicely into your existing workflow if you choose to use it.

The workflow centres around three key directories:

 artefact: this directory will store the generated artefact containing the sum of changes you accumulated
over time.

 dist: this directory is the home of your releases, amongst other things.

 src: here you can find the current development snapshot of your project.

The workflow assumes that your development team uses short-lived branches to work on a given ticket, feature,
or whichever name you gave your work item on a local development database. You export the schema object
using the project export command after completing the modification. This will create or modify files in the src
directory.

Once you are happy with your changes, you use the project stage command to prepare for deployment. This
command does all the heavy lifting by creating the necessary metadata for a smooth deployment based on
Liquibase in the dist directory. All changes are gathered under the next directory, pending a release name. Each

18 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

branch you are working on will get its own subdirectory underneath dist, making it easy for you to correlate your
changes to ticket you worked on.

You will read more about Liquibase in a later chapter in this tech brief.

A release is automatically created, (or cut) by taking all the staged changes from the next directory and moving
them to a dedicated directory, for example, 1.0.1, also found in dist. Additionally, a ZIP file containing all the
changes can optionally be created in the artefact directory.

You can read more about the SQLcl project command in the documentation and later in this tech brief.

Release Management
If you decide to follow the process suggested by SQLcl’s project command, cutting a release is easy. A dedicated
subcommand, project release, allows you to transfer all the staged changes into a new, dedicated directory.
Everything that hasn’t been released yet is gathered under the next directory. Once the release is cut, SQLcl
moves all pending changes from next to your release folder. You can see the effect in Figure 2; the latest release
folder is named 0.0.2.

You can also create an artefact reflecting your current release if you want. This strategy might be necessary in
cases where developers don’t have access to the deployment pipeline and vice versa. The artefact can be pushed
to an artefact repository, where the deployment pipeline can pick it up. This is also visible in Figure 2, where you
find the artefact named techbrief-0.0.2.zip near the top of the screenshot.

Integrating with the Continuous Integration Pipeline
It is common practice to trigger your project’s CI pipeline’s execution after a commit has been pushed to the
central code repository. Hence, pushing only the code that is expected to work with a reasonable level of
confidence is very important. Local testing and commit hooks can help build that confidence.

Should the pipeline’s execution abort due to whatever circumstances, a potentially critical situation arises, and
everyone should work on fixing the pipeline as a high priority. Teams employing Trunk-Based Development, in
particular, have to wait until the pipeline is fixed before additional new changes can be pushed.

You can read more about CI pipelines in a later section of this tech brief in section Writing effective CI/CD
Pipelines.

Summary
Git is the most common version control system. Understanding how Git works and getting everyone’s buy-in to
use it are crucial first steps in adopting a modern software development architecture. Whether you use separate
repositories for database code and frontend code or not depends entirely on your project and its surrounding
circumstances.

Choosing the “correct” directory layout for a database project up-front pays dividends once the project is well
underway. Schema changes should be applied using dedicated, commercial-of-the-shelf (COTS) tools like
Liquibase, preferably driven by SQLcl, to avoid the cost of maintaining a home-grown solution. SQLcl’s project
command relieves you from deciding the directory layout, at least for the database part of your application.

https://docs.oracle.com/en/database/oracle/sql-developer-command-line/index.html

19 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Ensuring Repeatable, Idempotent Schema Migrations
The previous chapters stressed the need for a version control system as part of the development process.
However, they deliberately did not cover how and what format to use when creating schema migration scripts in
detail. This section addresses this topic.

Remember from earlier in this tech brief that every database release is a schema migration. Unlike other software
development projects, once a piece of database code has been deployed using a schema migration tool as
described in this chapter, it cannot be modified in place and deployed again. This is the most significant
difference between stateless application development and database projects. This chapter explains why and
provides details of a database development workflow using Liquibase and SQLcl projects.

Benefits of using Dedicated Schema Migration Tools
Many teams use schema migration tools such as Liquibase, Flyway, or comparable ways of deploying schema
migrations built in-house. Liquibase, for example, offers the advantages shown in Figure 3:

Figure 3: Advantages of using Liquibase to deploy schema changes

Using off-the-shelf tools for schema migrations is generally preferable to using home-grown software. The
maintenance effort required to keep the custom solution up-to-date across all environments does not typically
add value. Worse, it might draw precious development resources away from delivering the actual product.

Using SQLcl and Liquibase to deploy Schema Migrations
The combination of SQLcl and Liquibase provides a great way to deploy database migration scripts inside CI/CD
pipelines. Using checksums and other metadata, Liquibase and other comparable tools, such as Flyway, can
identify which script has been run against a database, avoiding an unnecessary and potentially harmful
redeployment.

Writing a deployment tool in-house might appear tempting at first, after all, you know your environments best!
However, very soon you might realise that there are lots of edge-cases and other particularities to take into
account, and maintaining the schema-migration tool becomes a burden. Rather than adding value to the
business, resources need to be diverted to the deployment tool. It’s most likely more effective to stick to industry
standard tools like Liquibase. As an added bonus you can mitigate against many common problems, such as
schema drift if your team rigorously follows a strict discipline: once Liquibase (or Flyway, …), always Liquibase.
This way, all schema migrations are auditable, self-documented, and easy to track.

Perhaps SQLcl's greatest advantages are its low storage footprint, plentiful modern command-line features, and
built-in Liquibase functionality. This tight integration is a significant productivity boost, especially if you target
systems with mutual TLS encryption enabled, such as Oracle Autonomous Database.

Oracle SQLcl has excellent support for Liquibase. Developers can choose from two different models.

20 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

1. They can either decide to maintain their Liquibase code themselves, putting them in complete control of all
activities and leverage SQLcl’s built-in Liqubase functionality to roll out releases. Although it is still viable, the
maintenance effort to keep all Liquibase files up to date is as huge as unnecessary.

2. Since release 24.3, SQLcl has provided users with an opinionated database CI/CD framework called SQLcl
projects. It features techniques with a proven track record using a simple command-line interface. SQLcl
projects is the recommended approach and will be used throughout the tech brief over the manual approach.

Even though SQLcl projects relieve users from a lot of manual work, understanding how Liquibase works is still
important. The following sections elaborate on Liquibase concepts.

Liquibase Terminology and Basic Concepts
A basic understanding of Liquibase’s concepts is necessary before starting with a thorough description of SQLcl
projects. The most important ones include:

 Changelog

 Changeset

 Change Type

The following figure provides more detail concerning each of these. Please refer to the official Liquibase
documentation for all the details.

Figure 4. Liquibase changelog, changeset and change type explained

Changesets are the fundamental entities created as part of a new database release. Multiple changesets are
referred to as your database’s changelog. A changeset contains one or more change types.

Before the introduction of SQLcl’s project command, a developer was responsible for creating and maintaining
Liquibase’s changelog. With each new release, updates to the changelog had to be performed, which was often a
manual and potentially error-prone activity.

Using SQLcl’s project command relieves developers from interacting directly with Liquibase. Rather than worrying
about a directory structure and how to store changes and integrate new changes to the changelog, the project
command and its subcommands provide a streamlined developer experience, using Liquibase under the covers.

Practical Aspects of Creating the Database Changelog
You read before that SQLcl’s project command streamlines how you work with Liquibase and Oracle Database.
The following sections in this chapter outline how to use the projects command. Additional documentation is
available from the SQLcl user’s guide.

The first step is to create the configuration files and initial scaffolding for your project using the project init
command. This will generate the src and dist directories and initial configuration. It also ties the project to a
database schema. It doesn’t matter if you start a new project or introduce SQLcl projects to an existing application
with an existing schema.

https://docs.liquibase.com/
https://docs.liquibase.com/
https://docs.oracle.com/en/database/oracle/sql-developer-command-line/index.html

21 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Once the initial scaffolding and configuration have been added to the project, it is time to add schema objects.
You do so while connected to the database, but remember, the Git repository, not the database, has to remain the
source of truth.

SQLcl’s project follows the typical workflow found in most teams. After a ticket has been assigned to a developer,
a new branch is created. The developer works on the ticket and creates or modifies schema objects in the local
development environment. With today’s powerful hardware, it is not uncommon to see laptops used for this.
Oracle Database Free is a convenient choice for such deployments; it can be used directly on your laptop, a
container, or a virtual machine.

Once all the modifications required to complete the ticket and unit tests have been added and initial testing shows
no problems, the next step can commence. Schema objects that form part of the ticket are exported to the Git
repository.

The DDL statements of these schema objects are transferred to the src directory using the project export
command. The list of supported schema objects grows with every SQLcl release; the current status can be found
in the SQLcl documentation. You can see the project init and project export steps in the Terminal output in
Figure 5:

Figure 5: Screenshot showing VSCode and SQLcl project init/project export commands

More specifically, schema objects exported using project export end up in the src/database/<schema
name>/<object type> directory. In the example shown in Figure 5, you can see a file called “hit_count.sql”
containing table DDL statements in src/database/techbrief/tables. These need to be committed to Git.

Once you are happy with the changes, you stage them using the project stage command which moves all files
to the dist directory, where they can be deployed. SQLcl will try its best to honour dependencies. This way, you
should not end up with an index creation script that depends on a table that has yet to be created.

All changes are assigned to the next release, following SQLcl’s naming convention. This directory is automatically
created by SQLcl when staging changes. It follows the idea that changes are accumulated as part of the “next”
sprint.

https://docs.oracle.com/en/database/oracle/sql-developer-command-line/index.html

22 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

At the same time, the Liquibase changelog is updated, and each new file receives the necessary Liquibase tags to
identify them during deployment. Individual files are stored in a SQL format. SQLcl employs a hierarchy of
changelogs in XML format, beginning with the top-level file in dist/main.changelog.xml. It references all the
other release-specific changelogs and is maintained by SQLcl. Figure 6 shows a screenshot of the feature in
action, driven by Visual Studio Code.

Figure 6: Automatic updates to the Liquibase changelog

The great advantage of project stage over a manual approach is its simplicity. You don’t need to worry about
creating the changelog, determining dependencies between releases, or anything else. All of that is performed by
SQLcl.

Later, when cutting the release, SQLcl will move all changes from the next directory to a new directory with your
release’s name and update all Liquibase tags in all affected files. You can see the effect of this command in Figure
7:

23 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Figure 7: Cutting a release using the project release command

If you compare the main changelog from the previous figure with this one, you will notice how the new release’s
changelog was inserted.

If you like (or need to), you can create a ZIP file of all the changes using project gen-artefact. As you read
earlier, this step is typically performed in case your CI pipeline does not have access to production directly, but
instead operations need the generated artefact for manual deployment.

Checking the status of your deployments
You can deploy all changes the same way you would with a manually maintained changelog. Simply execute
dist/install.sql while connected to your target database schema.

Liquibase then works its magic and deploys only those changes that have yet to be deployed to the database. You
can see the effect in Figure 8:

24 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Figure 8: Installing the release in a database schema

If you are particularly cautious, you might want to set a restore point before you deploy the release. Although this
might provide a simple rollback mechanism, most developers prefer “forward fixing” instead. Flashback Database
operations are potentially harmful if your application has been accessed by users in the meantime. Any data
changes that occurred since the release’s rollout, up to the current point in time, are lost after a restore.

Liquibase maintains a set of tables in your target schema to track metadata. By default, these are called
DATABASECHANGELOG, DATABASECHANGELOGLOCK, DATABASECHANGELOGHISTORY but different names can be used, if
wanted. Regardless, these tables are created and maintained by Liquibase and should not be tampered with.

The lb history command exposes the contents of these tables, providing the current state of which changesets
have been deployed against the database and when. This is a significant step forward for most users as it requires
a lot less coordination between the teams. Tracking database changes is now a by-product instead of an essential
goal during application development, and no effort is required at all to enable this type of tracking. This built-in
benefit is not to be underestimated.

Summary
Using schema migration tools such as SQLcl and Liquibase allows developers to be more confident about their
database migrations. Once they embrace the workflow, schema migrations become much more manageable.
Combined with the mantras of releasing often and making small, incremental changes it is possible to drastically
increase the number of deployments.

25 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Efficient and Quick Provisioning of Test Databases
Deploying code to a database dedicated to testing is essential to Continuous Integration (CI) pipelines. Any
problems can be detected early and before they can cause harm in production. In the context of this section,
those databases are referred to as CI databases. As you read in the introduction to this tech brief, several tests
are typically run once the database release has been deployed into the CI database. Ideally, the entity – for
example, a database schema, a Pluggable Database (PDB), or a cloud service – resembles the production database
closely. Whilst identical clones of productions aren’t necessarily cost-effective for lower-tier testing and may carry
security concerns with them (production data might contain confidential or otherwise protected information), at
some stage in the deployment chain a change should be tested on production-like data volume to avoid
unpleasant surprises on release day.

More closely regulated industries, especially those dealing with PII (Personally Identifiable Information) and other
sensitive data, need to extra-careful when creating clones from production. Please consult your Information
Security department to ensure your process is compliant with the regulations! Data Masking, Data Redaction and
anonymisation as well as Transparent Data Encryption can be viable solutions for your environment. The exact
implementation details are out of scope of this tech brief as there are too many permutations on the subject to
cover.

Following the general rule that a CI pipeline’s execution must finish quickly, the time it takes to complete the
provisioning of the deployment target must be as short as possible. Remember that fast feedback is essential for
efficiently using CI/CD pipelines. The sooner a developer knows about an issue, the sooner it can be fixed. No one
wants to wait for 10 minutes only to encounter an error. Designing pipelines so they fail early is essential.

There are different approaches available to shorten the creation of a CI database. These include, but are not
limited to:

 Provisioning an Autonomous Database Cloud Service.

 Use an Oracle Exadata Database Service on Exascale Infrastructure.

 Use of container images (stand-alone/orchestrated by Kubernetes).

 Creation of a Pluggable Database.

 Using Copy-On-Write technology to clone a (pluggable) database.

 Provisioning a database schema.

Each technique offers advantages and disadvantages, which will be discussed in this section.

Autonomous Database
Oracle Autonomous Database provides an easy-to-use, fully managed database service that scales elastically and
delivers fast query performance. Autonomous Database delegates most database administration work to Oracle
as it is customary for a cloud service, making it an attractive solution for developers.

Autonomous Database-Serverless (ADB-S) databases are a good candidate for anyone with an existing cloud
footprint. They are great for CI pipelines because of their high degree of automation and the many options to
create them. Common options to create Autonomous Databases include:

 Creating an empty ADB-S instance (less common).

 Cloning an ADB-S instance, for example, from a production-like “golden copy”.

 Creating an ADB-S instance from a backup.

All these operations can be automated using Terraform, the Oracle Cloud Infrastructure (OCI) Command Line
Interface (CLI), or even simple REST calls. The following Terraform snippet provides a minimum of information
required to clone an existing Autonomous Database for use in the CI/CD pipeline:

https://www.oracle.com/autonomous-database/

26 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

resource "oci_database_autonomous_database" "clone_adb_instance" {
 compartment_id = var.compartment_ocid
 db_name = var.ci_database_name
 clone_type = "FULL"
 source = "DATABASE"
 source_id = ci_database_autonomous_database.src_instance.id
 admin_password = base64decode(local.admin_pwd_ocid)
 cpu_core_count = 1
 ocpu_count = 1
 data_storage_size_in_tbs = 1
 nsg_ids = [module.network.cicd_nsg_ocid]
 subnet_id = module.network.backend_subnet_ocid
}

The hypothetical ADB-S instance is created within a private subnet and is accessible from the CI server. The above
snippet creates a full clone of the source. There are alternatives to a full clone; you should pick the one that best
matches your workload needs.

You can read more about cloning Autonomous Database in the official documentation set.

Use an Oracle Exadata Database Service on Exascale
Infrastructure
Exadata Exascale is a new intelligent data architecture that delivers the best of Exadata and the best of Cloud.
Combining the performance, availability, scalability, and security of Exadata with hyper-elasticity, multi-tenancy,
and resource pooling, Exascale is the next-generation software and Exadata Cloud architecture powering extreme
performance for AI, analytics, and mission-critical workloads at any scale.

Exascale Infrastructure enables developers to create intelligent database clones very quickly, almost entirely
independent of the source database’s size. Exadata Sparse Disk Groups conceptually provided conceptually
similar functionality in the past; Exascale, however, takes space-efficient cloning to the next level without
sacrificing key Exadata features. These copies are immediately available and have the same native Exadata
performance and scale as the source databases. From a developer’s point of view, this is undoubtedly one of the
most significant advantages of Exascale technology.

Here is an example using the OCI Command Line Interface (CLI) to clone an existing Pluggable Database hosted
on a Exadata Database Service on Exascale Infrastructure in OCI. It relies on variables defined either within the CI
server or an external key vault and wait for either failure or the availability of the cloned PDB:

oci db pluggable-database create-local-clone \
--cdb-id "${DEVOPS_CDB_OCID}" \
--pdb-name "${CLONE_PDB_NAME}" \
--source-pdb-id "${CI_PDB_OCID}" \
--is-thin-clone true \
--pdb-admin-password "${PDB_ADMIN_PASSWORD}" \
--tde-wallet-password "${WALLET_PASSWORD}" \
--wait-for-state AVAILABLE --wait-for-state FAILED

As soon as you initiate the command the prompt will wait for either a successful outcome or failure. Similarly you
can use the OCI CLI or any other supported API to tear the CI database’s clone down after all tests completed.

More details about the create-local-clone command can be found in the OCI CLI documentation.

A dedicated tech brief covers Exadata Exascale Best Practices for Database Snapshots and Clones.

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/autonomous-clone-about.html#GUID-E695F149-8CFC-4226-81EE-FB74F3E3B9C0
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/cliconcepts.htm
https://docs.oracle.com/en-us/iaas/tools/oci-cli/latest/oci_cli_docs/cmdref/db/pluggable-database/create-local-clone.html
https://www.oracle.com/docs/tech/database/exadata_exascale_snapshot_clone_maa_best_practices.pdf

27 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Using Container Images
For the past decade, container technology has become ubiquitous. Conceptually similar to a classic virtual
machine, containers sacrifice some isolation from the host operating system for a lighter footprint.

The appeal of container technology is simplification: CI/CD pipelines often build container images. These
container images can be deployed anywhere a container runtime is available, from a developer’s laptop up the
tiers into a production Kubernetes cluster. Container images are self-contained and immutable and thanks to the
process of packaging runtime libraries together with the application code, you are less likely to run into
deployment issues.

For many developers, using container images has become the norm. If the application is deployed in a container,
why not run a database in container as well? Oracle’s own container registry features a section dedicated to the
Oracle Database, as shown in Figure 9.

https://container-registry.oracle.com/ords/f?p=113:1:128898806357580:::1:P1_BUSINESS_AREA:3&cs=3KAIgm66P_yoWXorkC-Cs6SJ6kwRKdKQCQe64f667-jN58D3jxZm9eAkEy_8R3q8YoT3ebyjDNvXZkwwjKILHJg
https://container-registry.oracle.com/ords/f?p=113:1:128898806357580:::1:P1_BUSINESS_AREA:3&cs=3KAIgm66P_yoWXorkC-Cs6SJ6kwRKdKQCQe64f667-jN58D3jxZm9eAkEy_8R3q8YoT3ebyjDNvXZkwwjKILHJg

28 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Figure 9: Database container image repositories on Oracle’s container registry

Please refer to My Oracle Support Oracle Support for Database Running on Docker (Doc ID 2216342.1) for more
details concerning database support for the various container runtimes.

The following sections provide examples for using Oracle Database within container runtimes.

Using container images with Podman or Docker
The following example demonstrates how to provision an Oracle Database 23ai Free database using the official
container image. The example was tested on Oracle Linux 8, using the distribution’s default container runtime,
Podman.

podman run --detach \
--volume oradata-vol:/opt/oracle/oradata \
--secret oracle-secret,type=env,target=ORACLE_PWD \
--publish 1521:1521 \

29 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

--name some-oracle \
container-registry.oracle.com/database/free:23.9.0.0

The above command starts a new container instance based on the Oracle Database 23ai Free image and exposes
listener port 1521. It initialises both the SYSTEM and SYS database user passwords to the value stored in a Podman
secret named oracle-secret. The database is persisted in a container volume named oradata-vol. After less
than a minute, the database is ready to be used and can be accessed on port 1521 on the container host.

Note that your CI/CD pipeline can use the provisioned, empty database as a source or use cloning technology
described later in this chapter to create a copy of an existing “golden copy” (Pluggable) Database. The latter might
be the more efficient approach, in other words, a less time-consuming one.

Using Container Images with Kubernetes
Advanced users of container technology might want to deploy database containers in Kubernetes or a
comparable orchestration engine.

As part of Oracle's commitment to making the Oracle Database Kubernetes-native—that is, observable and
operable by Kubernetes—Oracle released the Oracle Database Operator for Kubernetes, OraOperator.
OraOperator extends the Kubernetes API with custom resources and controllers to automate Oracle Database
lifecycle management.

Instead of manually provisioning and managing Oracle Database containers and Kubernetes cluster resources,
administrators can use the open-source Oracle Database Operator for Kubernetes.

The current release (version 1.1.0) supports many database configurations and infrastructure, including support
for Autonomous Database. Please refer to the documentation for a complete list of supported operations by
database and infrastructure type.

OraOperator can be instructed to deploy an instance of Oracle Database 23ai Free using the following YAML file:

Copyright (c) 2024, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at
http://oss.oracle.com/licenses/upl.

apiVersion: database.oracle.com/v1alpha1
kind: SingleInstanceDatabase
metadata:
 name: freedb-sample
 namespace: default
spec:
 ## Use only alphanumeric characters for sid, always FREE for Oracle Database Free
 sid: FREE

 ## DB edition
 edition: free

 ## Secret containing SIDB password mapped to secretKey
 adminPassword:
 secretName: freedb-admin-secret
 ## Database image details
 image:
 ## Oracle Database Free is only supported from DB version 23 onwards
 pullFrom: container-registry.oracle.com/database/free:23.9.0.0
 prebuiltDB: true

https://github.com/oracle/oracle-database-operator
https://github.com/oracle/oracle-database-operator
https://raw.githubusercontent.com/oracle/oracle-database-operator/main/config/samples/sidb/singleinstancedatabase_free.yaml

30 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

 ## Count of Database Pods. Should be 1 for Oracle Database Free or Express Edition.
 replicas: 1

Once you apply the YAML file, OraOperator takes care of the database’s setup. You can connect to the database a
few moments after submitting the YAML file to the Kubernetes API.

Using Container Databases
Oracle 12c Release 1 introduced Container Databases (CDBs). Unlike the traditional, non-CDB architecture,
Container Databases are comprised of a Root-Container (the CDB, internally referred to as CDB$ROOT), an
Oracle-managed seed database (PDB$SEED), and one or multiple user-created Pluggable Databases (PDBs). A
PDB is a user-created set of schemas, objects, and related structures that appear logically to a client application as
a separate database. In other words, each PDB provides namespace isolation, which is great for consolidating
workloads or providing separate, isolated development environments.

Figure 10: Conceptual diagram of the Oracle Database container database architecture

Application containers can provide additional levels of abstraction but they outside this tech brief's scope.

There are restrictions regarding the number of Pluggable Databases in Container Databases. For more
information, please refer to the Database Licensing Guide documentation for your Oracle Database version.

The following sections describe popular options for creating Pluggable Databases as part of CI/CD pipelines
before discussing ways to automate their creation and deletion.

Creating a new, empty Pluggable Database
A newly created PDB is “empty” after its creation. Your CI pipeline must redeploy the entire application first before
unit tests can be run. This is potentially a time-consuming task. If you are using a container image as described
earlier, you may already have a deployment target of an empty PDB. Both Oracle Database 23ai Free and its
predecessor, Oracle Database Express Edition (XE), provide an empty PDB out of the box. It is named FREEPDB1 or
XEPDB1, respectively. Combined with the setup based on a container image, you can spin up and connect to
FREEPDB1/ XEPDB1 in less than a minute in most cases.

Many developers prefer the creation of an empty PDB, combined with loading a seed data set over cloning. There
is one caveat with this approach: some database schema migrations might eventually deal with changing large
amounts of data when deployed to production. If you only ever test with a subset of production data, you might
end up with a long-running production schema migration not taken into account by the change window. It is
advisable to additionally perform testing on production-like data in higher-tier environments to get the most
accurate data on the runtime of each change.

To create a new PDB, the CREATE PLUGGABLE DATABASE statement can be used. Refer to the Multitenant
Administrator Guide documentation for more information on how to create pluggable databases. Alternatively,
use a REST API to create a new PDB. You can read about the REST API for PDB Lifecycle Management later in this
section.

https://docs.oracle.com/en/database/oracle/oracle-database/23/multi/creating-and-configuring-an-oracle-database.html#GUID-18B03451-5C74-4B53-A892-656C3E8A2556
https://docs.oracle.com/en/database/oracle/oracle-database/23/multi/creating-and-configuring-an-oracle-database.html#GUID-18B03451-5C74-4B53-A892-656C3E8A2556

31 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Cloning an existing Pluggable Database
Oracle's PDB cloning functionality is a more sophisticated way of preparing for the deployment of schema
changes. Since the inception of Container Databases in Oracle 12c Release 1, many ways for cloning PDBs have
been added. Chapter 8 of the Database Administrator’s Guide covers the topic in detail.

Cloning an existing “gold image” PDB can significantly reduce the time it takes to deploy the application. Provided
that appropriate tooling, such as the powerful Liquibase and SQLcl combination is used, the release can be
applied to a PDB clone consistently and in very little time. Chapter 3, Ensuring Repeatable, Idempotent Schema
Migrations , discusses Liquibase for managing schema changes.

As per the documentation reference above, many options exist for cloning Pluggable Databases. Using sparse
clones (based on Copy-on-Write technology) typically significantly reduces storage requirements for the cloned
PDB.

Note that the clone of your PDB should resemble production to avoid unpleasant surprises during the production
rollout. If you prefer to avoid running unit tests on a production-sized database clones, please consider them
during the integration and/or performance testing stages.

Automating Pluggable Database Lifecycle Management
Requesting a clone of a PDB via a ticket is no longer viable for most users; it simply takes too long. Furthermore,
this legacy workflow is not suitable for CI pipelines, either. The first step towards using a CI pipeline is automating
the PDB lifecycle. Thankfully, this task has already been completed: Oracle REST Data Services (ORDS) provides
REST endpoints that you can use to automate the creation, cloning, and deletion of PDBs.

The following example has been taken from an existing CI pipeline. The curl command line utility is used to send
a REST call to ORDS which initiates the clone of the “gold image PDB”:

clone_ci_database:
 stage: build
 environment:
 name: ci
 script:
 - |
 curl --verbose --fail --user devops:${ORDS_API_PASSWORD} \
 -H "Content-Type: application/json" -H "Accept: application/json" \
 --data '{ "new_pdb_name": "'${CLONE_PDB_NAME}'", "source_pdb_name": "cipdb" }' \
 https://${ORDS_CICD_HOST}:8181/ords/_/db-api/stable/database/pdbs/
 tags:
 - shell

Using environment variables maintained by a Vault instance or locally by the CI server increases code reusability
and security. The above example is very basic and does not use snapshot cloning functionality or encryption.
Real-world cases are most likely more complex.

Creating Copy-on-Write snapshots (again, not used in the example) can help reduce the storage footprint of the
cloned database, provided your system uses compatible storage. It should also greatly reduce the time required
by the cloning operation for large databases. Oracle Exadata systems with Exascale Infrastructure take this one
step further, allowing space efficient clones of even very large databases in very little time while preserving the
benefits of Exadata’s intelligent storage.

Please refer to the Oracle REST Data Services API documentation for more information about the PDB Lifecycle
Management calls.

https://docs.oracle.com/en/database/oracle/oracle-database/23/multi/cloning-a-pdb.html#GUID-05702CEB-A43C-452C-8081-4CA68DDA8007
https://www.oracle.com/database/technologies/appdev/rest.html
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/24.4/orrst/api-pluggable-database-lifecycle-management.html
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/24.4/orrst/api-pluggable-database-lifecycle-management.html

32 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Using block-device Cloning Technology
Customers using traditional storage arrays on-premises, and cloud customers using a block volume service can
use block-volume cloning technology to quickly create copies of their databases. This option was used with non-
CDB databases and is still available to customers using Oracle Database 19c with the traditional Oracle
architecture. The process of block-volume cloning may require putting the database into backup mode to prevent
in-flight I/O requests (that aren’t necessarily sent to the database in order) from corrupting the copy.

Many storage vendors provide tools and procedures to clone block devices. It might be easiest to refer to these to
automate the process, provided they offer an external API.

Using Copy-on-Write Technology
Copy-on-Write (COW) technology, also known as sparse clones, allows users to create full-sized copies of a
database that only take a fraction of the space the source requires. Typically, a sparse clone of a volume can be
created quickly. Very little data needs to be written during the clone operation itself. From an operating system's
point of view, the sparse clone has the same properties as its source. Under the covers, however, the storage
software layer does not start copying every bit from the source to the target as it would with full clones. Sparse
clones feature pointers to source data (the source volume). Only when data on the cloned volume changes will
storage be used. In other words, the amount of storage required for the cloned database is directly proportional to
the amount of change.

This process can be highly beneficial in CI pipelines, where typically 10% or less of the source database is
changed. The potential downside of the approach—some overhead on the storage layer due to the maintenance
of the delta—is typically compensated by the storage savings, especially for larger databases.

COW technology predates the introduction of Container Databases and thus can be used for 19c databases using
non-CDB architecture and Pluggable Databases alike.

Not every storage engine and file system supports COW technology. Please check with your storage vendor and
Oracle’s support portal to see if your solution supports COW cloning of (Pluggable) Databases.

Using Schema Provisioning
Schema provisioning is the last but not least suitable mechanism for providing a deployment target. It is available
for CDB and non-CDB environments.

In its most basic form, a user-created REST call creates a new schema in an existing Oracle database, returning
the new username and password to the CI pipeline. In the next step, the entire application must be provisioned. As
with the new, empty Pluggable Database approach described earlier, this is potentially time-consuming.

It might be quicker to start with a well-known/well-defined state, similar to the scenario described earlier in the
context of cloning PDBs. Schemas in Oracle Database cannot be “cloned” using a SQL command. They can,
however, be duplicated using Data Pump Export/ Data Pump Import. Assuming a suitable export file exists, the CI
pipeline can invoke Data Pump using a REST call. ORDS provides a set of REST endpoints to create a Data Pump
Import Job.

Summary
Following the spirit of fast feedback loops, CI pipelines must ensure that deployment targets are provisioned
quickly. Customers already well into their cloud journey have many options at their disposal. Cloning Autonomous
Database Serverless (ADB-S) instances ticks lots of boxes: from “testing on production-like data volumes” to
“quickly provisioning the environment,” few things are left to be desired. This approach might be unsuitable in
highly regulated environments where production data cannot be made available without proper data masking and
many other compliance checks.

Exascale technology is also well suited to cloning large databases quickly. The ability to clone TBs worth of
storage in very little time is a potential game changer.

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/23.2/orrst/api-data-pump.html
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/23.2/orrst/api-data-pump.html

33 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Customers without Exadata storage also have a multitude of options available to them. Sparse Clones in particular
offer a way out of the dilemma of having to provision very large databases quickly.

Whichever approach you choose, please ensure you run performance tests before going live! Performance tests
on production-like data are the only way to catch regressions before they hit production.

34 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Writing effective CI/CD Pipelines
The previous chapters of this tech brief were intended to lay the foundation for understanding how CI/CD
pipelines can be defined. This chapter describes a hypothetical CI/CD pipeline based on GitLab Community
Edition (CE). Although the choice for this chapter fell to GitLab CE, the concepts described next apply to all CI
servers. The use of GitLab in this tech brief does not endorse this technology.

GitLab is one option among many others such as Jenkins, Travis, CircleCI, and GitHub Actions, to mention just a
few.

Note: Administration of CI/CD solutions like GitLab and GitHub can easily fill hundreds of pages. This chapter tries
to cover the concepts and options necessary to get started with the given technology. However, it cannot replace
the respective documentation.

AI-powered software development tools are starting to handle more steps in the development process using
Large Language Models. CI pipelines are no exception. While this is just beginning, it is expected that AI tools will
soon automatically review code, check coding styles, and handle similar tasks.

Given the right guardrails, and protection against leak of Intellectual Property and other sensitive information,
code quality can potentially improve with the help of AI-based processing. Compliance with your organisation’s
in-house rules concerning the use of AI is paramount.

Introduction to CI/CD Pipelines
CI/CD pipelines are typically defined in a markup language like YAML and stored alongside the project code.
Some CI servers use their own domain-specific language, which requires a compilation step. Regardless of the
implementation, the pipeline’s definition needs to be in a format that can easily be stored in Git, as described in
the earlier chapter concerning version control systems.

Figure 11: Example of a successful pipeline execution in GitLab

The screenshot depicted in Figure 11 shows a successful pipeline execution. It shows the various stages—linting,
building, and testing the code. Note the absence of integration testing and deployments to production. The latter
are frequently limited to merge pipelines.

35 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Figure 12: Example of a merge pipeline in GitLab

Figure 12 shows a pipeline being executed as part of a GitLab merge request (a pull request in GitHub). In GitLab,
pipelines are run when the merge request is created and once more as part of the actual merge. Pushing a
commit to a feature branch is another option for triggering a CI pipeline’s execution. Merge pipelines are often
more sophisticated, due to the fact that additional validations and integration tests must be run to avoid
regressions of the change.

As you can see in Figure 12, a pipeline consists of:

 Stages

 Jobs

Many CI servers allow you to create more complex pipelines. Please refer to your CI server’s documentation for
more details.

CI Pipeline Stages
Stages allow you to group jobs into logical units of work. In the above example, linting, static code analysis and
vulnerability scanning are performed in the linting stage. Stage names are entirely arbitrary and can be chosen
depending on the project’s needs. Most CI servers allow the definition of stage names, like for example, in GitLab:

stage definition
stages:
- linting
- build
- test
- deploy

Stages are typically completed in order. When designing stages, you should consider the principle of “fail early”
literally: the sooner the pipeline fails, the quicker the developers can react. It is advisable to perform jobs requiring
little to no time first before starting on the ones that can take a while, like cloning the source database.

You can and should differentiate between regular commit pipelines and merge pipelines. A developer pushing to
the feature branch triggers the regular commit pipeline which is often less involved than the merge pipeline.

Merge pipelines are even more important: they are the last set of guard rails before merging a feature (e.g. a
ticket) into the main branch. Therefore, most developers add additional checks to these. If you compare Figure 11
and Figure 12 closely, you will notice additional integration tests performed during the merge pipeline’s

36 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

execution. Furthermore, you see a deployment step as well. After a final review of the code and application, a
human, e.g. release management, can trigger the job to deploy into production.

CI Pipeline Jobs
The CI pipeline must perform jobs like linting code, deploying database schema changes, etc. All database schema
changes frequently target a clone of the CI database.

CI/CD pipelines group jobs logically into stages. Systems employing YAML syntax can define a job like this:

build_app_container:
 stage: build
 script:
 - cd src/python
 - docker build -t demo:${TAG_NAME} .

push_app_to_ocir:
 stage: build
 script:
 - docker tag $(docker image ls -q demo:${TAG_NAME}) ${OCI_REGISTRY_PATH}/demo:${TAG_NAME}
 - docker push ${OCI_REGISTRY_PATH}/demo:${TAG_NAME}

The build_app_container job is executed as part of the build stage and executes shell-script code to build the
container image. The following job in the build stage, push_app_to_ocir pushes the container image to the
container registry.

You can often define additional properties of a job, such as when to run it, which environment to target, and so
on. If your job produces log files or artefacts, these can also be exported and made available for download.

Ensuring Code Quality
Code quality is one of the most critical metrics for automating deployments. The DORA State of DevOps Report
regularly concludes that deploying frequently results in a lower failure rate. This might sound counterintuitive, but
thanks to code quality checks executed as part of the CI pipeline or Git’s pre-commit hooks, this requirement can
be met.

Linting
According to Wikipedia, linting is a term used in computer science for a process where

 Programming errors …

 Many types of bugs …

 (Programming) Style …

 Other things …

… can be detected and/or enforced.

Linting should occur as one of the first tasks during the execution of a CI pipeline. Code that doesn’t pass the
linting guidelines does not have to be deployed to find out that it will fail to work correctly; the linting stage
confirms that it will fail. Therefore, a deployment can be skipped, and the pipeline’s status can be set to “failure.”

Errors during the linting phase should be rare: most Integrated Development Environments (IDEs) allow
developers to include linters in the development process. Provided that the developer’s development
environment uses the same linting rules and definitions as the pipeline, the IDE should have highlighted any
potential errors, allowing the developer to fix them before committing the code.

https://en.wikipedia.org/wiki/Lint_(software)

37 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Linting is no exact science, and one size doesn’t fit all. Some default rules that the linter enforces by default might
not apply to the project. In cases like this, the team usually decides which linting rules to use and which ones to
disable.

As with all other configuration settings, Infrastructure as Code, etc., the linter’s configuration should also be part
of the Git repository.

Unit Testing
Once the code passes formal requirements, it can be subjected to Unit Tests. Numerous unit testing frameworks
are available for your application language of choice, but what about business logic inside the database such as
stored procedures? utPLSQL is perhaps the most common framework for testing PL/SQL and it features in the
following examples, but that doesn’t mean your project has to stick with it: there are numerous alternatives as
well. Similarly, use the same unit testing frameworks for business logic inside the database written in Java,
JavaScript or Python.

The following example demonstrates how to use utPLSQL. Note that all Liquibase tags at the very top of the file
are automatically generated by SQLcl projects. These can safely be ignored for now, the focus should instead be
on the --% tags inside the PL/SQL package header. The comments, immediately following by a % sign instruct
utPLSQL how and what to test.

-- liquibase formatted sql
-- changeset MARTIN:be… stripComments:false logicalFilePath:../martin/package_specs/…
-- sqlcl_snapshot src/database/martin/package_specs/test_app_package.pks:…

create or replace package test_app_package as

 --%suite(Unit-tests covering the backend API)

 --%test(ensure new session is created)
 procedure new_session;

 --%test(ensure additional session is created)
 procedure increment_hit_counter_for_session;

 --%test(ensure additional session is created)
 procedure finalise_all_sessions;

end;
/

Regardless of the language and technology, unit test frameworks define test suites, logically grouping related
tests. Within test suites, multiple tests are created. The developer defines an expected outcome for each test
based on a deterministic set of input parameters. If the application’s code returns the expected result, the test
passes, or otherwise fails.

It is strongly recommended to add unit tests be added to database projects. Although they might seem more work
up front, the benefits down the road outweigh the initial overhead.

Performance Testing
A CI/CD pipeline doesn’t necessarily initiate performance testing due to its time-consuming nature; however, it is
essential to conduct regular performance tests. These should ideally be targeted against a production-sized
workload.

https://www.utplsql.org/

38 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Various options are available in the context of Oracle Database, such as Real Application Testing or SQL
Performance Analyzer. Depending on your license agreement for Oracle Database, these might be extra-cost
options.

Client-side load generators have also been successfully used to generate application load. Using these is another
viable approach to performance testing as long as the usage characteristics of the real world can be represented
as accurately as possible.

Deployment
Once the Integration part of the Continuous Integration pipeline has been completed successfully, it is time to
deploy the change. Thanks to modern software deployment tools such as containers, deployment issues like
library incompatibilities often encountered in the past are well addressed.

SQLcl projects perform a similar job for database code. In addition to maintaining the Liquibase changelog, they
also allow for the generation of artefacts that can be stored in an artefact repository (not to be confused with
source code repository) or passed to a dedicated deployment pipeline should developers and operations teams
differ.

A deployment pipeline can drive database changes using Liquibase, Flyway, or any other tool. Thanks to the
metadata preserved by these tools, database change scripts will run only once. SQLcl projects doesn’t
differentiate between production and lower-tier environments. The deployment is always identical, either by
using the install.sql script found in the dist directory or by deploying a previously generated artefact.

The question about the degree of deployment automation remains: Continuous Deployment in its pure form
mandates that deployments be run against production as soon as they have passed all the tests defined in the
pipeline. However, this might not be risk-free, and many departments would be better off triggering the
deployment manually.

All major CI servers support a manual deployment attribute. The following is an excerpt from a GitLab pipeline’s
deployment stage:

deploy_to_prod_database:
 stage: deploy
 environment:
 name: production
 script:
 - |
 /opt/oracle/sqlcl/bin/sql \
 ${ORACLE_PROD_USER}/${ORACLE_PROD_PASSWORD}@${ORACLE_PROD_HOST}/prod \
 @dist/install.sql
 artefacts:
 paths:
 - sqlcl-lb-*.log
 name: "$CI_JOB_NAME"
 expire_in: 1 week
 tags:
 - shell
 rules:
 - if: $CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH
 when: manual

Thanks to the when attribute, this step is executed manually. Furthermore, it is run only as part of a merge
pipeline into the main branch as specified in the if section under rules.

Deployments of your database changes are not limited to the CI database and production; any other tier should
be considered equally important. The same deployment mechanism should be used for your User Acceptance

39 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Test, Integration Test and Performance Test environments. Most CI servers allow you to pass variables to the job
or stage. These can be used to determine the destination servers, for example.

Updating the CI database
Another important aspect of your CI/CD pipeline's execution is keeping the CI database up-to-date with the latest
changes that have gone live in production. The CI database should always be as close to the production database
as possible; hence, changes deployed into production must also be reflected in the CI database.

Allowing the CI database to become stale is not recommended. Configuration drift is a serious problem that is
best addressed by keeping the releases in production closely aligned with the CI database.

Thanks to tools like SQLcl/Liquibase or Flyway, all changes not yet applied to a database (the change delta) will
be rolled out automatically during deployment. This is not only true for production deployments, but also for the
CI database clones that are provisioned as part of the test execution. However, the larger the change delta gets,
i.e., the more changes the CI database lags behind the latest database release, the longer the CI database test
setup phase will take, eventually slowing down your overall pipeline execution.

To remedy that, the CI databases from which the clones are derived should regularly be updated with the latest
changes so that the change delta stays at a minimum.

You must decide when and how to update the CI database based on your deployment frequency and whether you
employ Continuous Delivery or Continuous Deployment. If you plan on intra-day deployments straight to
production, you may want to make updating the CI database with the changes part of your deployment stage.

On the other hand, if you employ Continuous Delivery or have infrequent deployments, a regular (daily) refresh of
the “gold image” from production may be enough.

Summary
Creating effective CI/CD pipelines for a software project is very rewarding once all the project’s requirements have
been implemented. However, the task isn’t trivial. Sufficient time should be set aside to plan and create the
pipeline. The amount of coordination required between teams and the potential change in culture required should
not be underestimated. It is advisable to provide some time as a contingency.

CI/CD pipelines are typically written in YAML or comparable markup languages. As with any other application
artefact, they should be part of your project’s Git repository.

Developers can and should use test locally (linting, unit tests, code coverage, etc.) before pushing a commit to the
remote repository. Test-Driven Development (TDD), combined with Trunk-Based Development has proven to
be a successful combination, as visible in many State of DevOps reports.

40 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Performing Schema Changes Online
The previous chapters provided an overview of how to deploy schema changes effectively. Combining CI/CD
pipelines and a development workflow that’s right for your team enables you to deploy small, incremental
changes to the application with a high degree of confidence that they won’t break production.

Deploying to Production with Confidence
Deployments to production are special: extra care must be taken not to interrupt ongoing operations. For many
systems, stopping production workloads to deploy a software release has been impossible for many years, and
such drastic measures shouldn’t be required anymore.

One of the concerns voiced by developers is related to the (misperceived) inability of relational databases to
perform online schema migrations. This chapter aims to address these concerns, demonstrating that application
changes can indeed be performed online with Oracle Database.

Avoiding outages, however brief they might be
Schema migrations with Oracle Database are different from many other relational database management systems
(RDBMS). The Oracle Database has been able to perform many DDL (Data Definition Language) operations
online for decades. Online index rebuilds, for example, have been available from as early as Oracle 8i (released in
1998). Adding columns to tables, rebuilding indexes, or even code changes in PL/SQL don’t have to result in
extended periods of locking database objects and blocking workloads from running.

Please note that the Oracle Database offers far more online operations than covered in this chapter with its focus
on application development. Please refer to the Oracle Database Development Guide, Database Concepts, and the
Database Administrator’s Guide for a complete picture.

Oracle has an entire team dedicated to designing a Maximum Availability Architecture (MAA). Their work is
very important when it comes to maintaining the underlying infrastructure during planned and unplanned
outages. There is a certain overlap with this tech brief, you are encouraged to review the MAA tech briefs in
addition to this one.

Online operations
The difference in elapsed time between online and blocking operations is striking, especially if the objects to be
changed are frequently accessed. Oracle guarantees that structural changes to a schema object like a table,
partition, or index cannot be applied while a transaction changing the segment's contents is active. The same is
true for a piece of business logic being executed, such as a trigger or stored procedure. The rationale is to ensure
consistency and (data) integrity as guaranteed by ACID transaction principles (atomicity, consistency, integrity,
durability). This is both intended and a good thing.

Online operations in the context of this chapter refer to those operations that have been optimised to require
locks only for the shortest period, if at all. They are easy to spot as they typically have an additional ONLINE
keyword as part of the DDL command. Some features discussed in this chapter might require an extra license;
always consult the Database Licensing Guide documentation when in doubt.

The Oracle SQL Language Reference contains a list of non-blocking DDL operations per release.

Creating Indexes Online
Index creation and rebuilding have been part of the Oracle Database engine for over 25 years. Introduced in the
Oracle 8i timeframe, developers use the ONLINE keyword to indicate that regular Data Manipulation Language
(DML) operations on the table will be allowed during the index creation.

Creating an index cannot be performed entirely without a brief period of locking. However, the time to hold the
lock will be very short in most cases. The index creation or rebuilding command will queue for its lock, just like any
ongoing transaction does.

https://docs.oracle.com/en/database/oracle/oracle-database/23/adfns/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/cncpt/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/admin/index.html
https://oracle.com/maa
https://oracle.com/maa
https://docs.oracle.com/en/database/oracle/oracle-database/23/dblic/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/sqlrf/Automatic-and-Manual-Locking-Mechanisms-During-SQL-Operations.html#GUID-0304C4AA-BD28-4C2A-B7F5-267532FB9499

41 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Initially, the foreign key referencing SESSION_ID in table HIT_COUNTS was unindexed.

CREATE TABLE hit_count (
 session_id CHAR(36 BYTE) NOT NULL ENABLE
 hit_time TIMESTAMP(6) DEFAULT systimestamp NOT NULL ENABLE
);

The following command adds the index online without interrupting users from performing DML operations
against the table.

CREATE INDEX i_hit_counts_sessions ON
 hit_counts (
 session_id
)
 ONLINE;

Introducing partitioning to an existing, non-partitioned table
Oracle offers multiple technologies to introduce or change table partitioning: the ALTER TABLE command below
and the DBMS_REDEFINITION PL/SQL package. The latter serves additional use cases and will be covered in more
detail later.

A requirement to preserve entries in the application’s HIT_COUNTS table for the last twelve months makes the
table’s growth projection much larger than originally anticipated and retrieving records for the current month will
become slower as time goes on and the table get larger. Partitioning the table by range based on the HIT_TIME
column will avoid performance degradation for these queries. It will also make pruning old records easy as these
are guaranteed to be in partitions beyond the twelve most current partitions. Instead of having to run a potentially
expensive delete DML statement, the partitions containing old records can simply be dropped. The following
SQL command performs this operation online. At the same time, the previously added index is converted to a
locally partitioned index. Liquibase tags have been omitted for brevity.

ALTER TABLE hit_counts MODIFY
 PARTITION BY RANGE (
 hit_time
) INTERVAL
 (NUMTOYMINTERVAL (
 1, 'MONTH'
))
 (PARTITION p1
 VALUES LESS THAN (TO_TIMESTAMP('01.01.2000', 'dd.mm.yyyy'))
)
 ONLINE
 UPDATE INDEXES (
 i_hit_count_session LOCAL
);

The above example introduces interval partitioning to the table based on the HIT_TIME timestamp. Data is
automatically sorted into the correct partition thanks to the NUMTOYMINTERVAL() function. This is merely one
example of the possibilities you have available: you can change the partitioning scheme in almost any way you
want, including indexes.

Compressing a segment online
Both tables and table (sub-) partitions can be compressed online. Following the previous example of introducing
range partitioning to HIT_COUNTS, you can compress the oldest segment online shown by the command below.
The Liquibase tags have again been omitted.

42 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

ALTER TABLE hit_counts
MOVE PARTITION p1
COMPRESS BASIC
ONLINE;

Partition p1 is now compressed using BASIC compression. Depending on your platform, you can achieve better
compression ratios using Advanced Compression Option or Hybrid Columnar Compression (HCC).

If you don’t want to own the process of compressing older, read-only data, you may be interested in Automatic
Data Optimization (ADO). It uses a heat map to record segment activity. It allows you to define Information
Lifecycle Management (ILM) policies, such as moving segments to different tablespaces and/or compressing
them as part of the policy execution.

Adding Columns to Tables
Adding columns to tables is a typical task for any developer. Oracle Database optimised the process of adding
new columns. Nullable columns without default value can be added to the table without interruption since Oracle
Database 11.2. Likewise, columns defined as NOT NULL can be added online when they have a default value.
Before Oracle Database 11.2, adding a NOT NULL column with a default value required an update of the entire
table to store the default value in the column after the column was added, causing significant load on the storage
system and other overhead.

Oracle Database 11.2 changed this to a metadata-only operation, breaking the correlation between the elapsed
time to execute the command and the table size. Oracle Database 12.1 added the same mechanism for nullable
columns with a default value as well, transforming the addition of any column to tables into an online operation.

The issued ALTER TABLE … ADD COLUMN command will wait until all previous transactions before the ALTER
TABLE … ADD COLUMN command are finished, then briefly lock the table, perform a metadata change, and finish.
In a sense, the ALTER TABLE … ADD COLUMN command is just like any other transaction queued until all previous
transaction holding locks are finished. Note that there is no dedicated ONLINE keyword.

Using Online Table Redefinition to Change Table Structures
Online
Oracle Database provides a mechanism for users to make table structure modifications without significantly
affecting the table's availability to other users and workloads. The mechanism is called online table redefinition
and is exposed via the DBMS_REDEFINITION PL/SQL package. Redefining tables online substantially increases
availability compared to traditional methods of redefining tables manually.

Note that using DBMS_REDEFINITION requires you to write custom scripts with SQLcl projects at the time of
writing.

When a table is redefined online, it is accessible to both queries and DML operations during much of the
redefinition process. Typically, the table is locked in exclusive mode only during a very small window that is
independent of its size and the complexity of the redefinition. If there are many concurrent DML operations
during redefinition, a longer wait might be necessary before the table can be locked.

The application’s SESSIONS table is defined as a relational table featuring three columns:

 SESSION_ID – the UUID typically provided by the Python application.

 USER_AGENT – the browser invoking the application.

 DURATION – the duration of the session.

The team decided to change the table structure, combining the latter two columns into a JSON column. The
change should be performed while the application remains online. It is good practice to check if the source table
can be redefined:

begin

https://docs.oracle.com/en/database/oracle/oracle-database/23/admin/managing-tables.html#GUID-A63096F3-DD43-4E0F-803E-BACC0D0EFD2D

43 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

 sys.dbms_redefinition.can_redef_table ('DEMOUSER', 'SESSIONS');
end;
/

If no errors or exceptions are thrown by the above procedure, the process can be initiated. First, you create a
target table. The target table defines how the table you redefine should look once the process is finished. The
documentation refers to it as the interim table:

CREATE TABLE sessions_json (
 -- this is a UUID
 session_id char(36) NOT NULL,
 session_data json
);

Note that existing indexes on the source table will automatically be copied to the interim table as part of the
procedure to the interim table. Therefore, no primary key/unique index is defined on the interim table. Very large
tables might benefit from parallel DML and parallel query. Enable them as necessary, provided your workload
allows it and you have sufficient resources on your database server to handle the extra load without causing
problems to other users.

With the interim table in place, the process can be started:

BEGIN
 DBMS_REDEFINITION.start_redef_table(
 uname => 'DEMOUSER',
 orig_table => 'SESSIONS',
 int_table => 'SESSIONS_JSON',
 col_mapping =>
 'session_id session_id, ' ||
 'json_object(user_agent,duration returning json) session_data',
 options_flag => DBMS_REDEFINITION.cons_use_pk
);
END;
/

COL_MAPPING is by far the most important parameter in this code snippet. Using the COLumn MAPPING string,
you define how to map columns between the source and interim tables in form of a comma-separated list of key-
value pairs. Each key refers to a column in the source table, or an expression; the corresponding value denotes
the interim table’s column name. You typically add a key-value pair for each column mapping. In the above
example

 SESSION_ID is mapped to SESSION_ID – no change; the column names and data types are identical.

 A call to JSON_OBJECT() featuring the relevant columns from the source table is mapped to the
SESSION_DATA column in the interim table.

It is possible to copy the table dependents over as well. The example below copies the unique index and privileges
to the interim table but not the primary key constraint or triggers as instructed via the copy_* parameters being
set to FALSE. Also, note that statistics must be gathered manually after the redefinition operation since
COPY_STATISTICS is FALSE, a conscious decision given that the table structures of the source and interim tables
are different. Hence, statistics for the new column in the interim table do not exist in the source table. All the other
parameters are set based on the application’s needs. Any errors encountered while executing the code block will
raise an exception thanks to IGNORE_ERRORS = FALSE.

set serveroutput on
DECLARE

44 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

 l_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.copy_table_dependents(
 uname => 'DEMOUSER',
 orig_table => 'SESSIONS',
 int_table => 'SESSIONS_JSON',
 copy_indexes => DBMS_REDEFINITION.cons_orig_params,
 copy_triggers => FALSE,
 copy_constraints => FALSE,
 copy_privileges => TRUE,
 ignore_errors => FALSE,
 num_errors => l_errors,
 copy_statistics => FALSE
);
 dbms_output.put_line('error count: ' || l_errors);
END;
/

Once the command completes and no errors occurred, it is time to add the constraints. In the above case, only
one needs to be added: the primary key.

ALTER TABLE sessions_json
 ADD CONSTRAINT pk_sessions_json
 PRIMARY KEY (session_id);

You can periodically synchronise the interim table data with the source table during the redefinition process. After
the redefinition process started by calling START_REDEF_TABLE and before it ended by calling
FINISH_REDEF_TABLE, a large number of DML statements may have occurred on the source table. If you know
that this is the case, then it is recommended that you periodically synchronise the interim table with the source
table. There is no limit to how many times you can call SYNC_INTERIM_TABLE().

BEGIN
 DBMS_REDEFINITION.sync_interim_table(
 uname => 'DEMOUSER',
 orig_table => 'SESSIONS',
 int_table => 'SESSIONS_JSON',
 continue_after_errors => false
);
END;
/

Your development team can query the interim table to ensure that the structure, contents, and any other
properties of importance match your expectations. If so, you can finish the redefinition process:

BEGIN
 DBMS_REDEFINITION.finish_redef_table(
 uname => 'DEMOUSER',
 orig_table => 'SESSIONS',
 int_table => 'SESSIONS_JSON',
 dml_lock_timeout => 60,
 continue_after_errors => false
);
END;

45 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

/

As soon as the prompt returns, the tables have been swapped: what was named SESSIONS is now renamed to
SESSION_JSON. The application might have noticed a brief moment when the database dictionary was updated to
facilitate the swap, but it can carry on without interruption provided it has been updated to use the new table
structure. The last thing left to do is gathering of table statistics on the SESSIONS table:

BEGIN
 -- table prefs define all the necessary attributes for stats gathering
 -- they are not shown here
 DBMS_STATS.gather_table_stats('DEMOUSER', 'SESSIONS');
END;
/

This concludes the online table redefinition example. You can also use this approach to rename columns in a
table, a task that otherwise would require a lot more effort to complete transparently to the application.

Next-level Availability: Edition-Based Redefinition
Edition-based redefinition (EBR) enables online application upgrades with uninterrupted availability of the
application by versioning application code and data model structures using editions. You can think of editions as
versions of an object. When the rollout of an application upgrade is complete, the pre-upgrade version of the
application and the post-upgrade version can both be in active usage at the same time.

Using this mechanism, existing application versions can continue to use the pre-upgrade database object edition
(or version) until usage of it reaches its natural end; and all new application versions can use the post-upgrade
database object version. When there is no more usage of the pre-upgrade application database object, the version
can be retired.

In this way, EBR allows hot rollover from the pre-upgrade version to the post-upgrade version with zero
downtime.

Adopting EBR can happen in multiple steps, and it is perfectly fine not to progress toward the final level described
in the following sections. Anything that helps make your application more resilient to changes is a win!

EBR Concepts
As the name implies, Edition-based redefinition is based around editions. Editions are non-schema objects; as
such, they do not have owners nor reside inside any schema. Editions are created in a single namespace, and
multiple editions can coexist in the database. Editions provide the necessary isolation to re-define schema objects
of your application.

Database objects such as packages, procedures, triggers and views can all be editioned. Any application using
such objects as part of its execution can leverage EBR to introduce a changed object under a new edition (or
version) without changing or removing the current object. You, as the user or the application itself, can then
decide when to use which edition, and the database will resolve the correct version of the objects accordingly.

Tables are not editioned, and they cannot be. Instead, you work with editioning views instead when table changes
are required. Note that creating an editioning view requires an application outage, but that might be the last
outage you must take if you fully embrace EBR. On an editioning view, you can define triggers just like on a table,
except for crossedition triggers, which are temporary, and INSTEAD OF triggers. Because an editioning view can
be editions, one can create multiple versions of the view all pointing to the same underlying table but exposing
different columns, thus making it appear as if the table itself has multiple versions.

In the scenario where other users must be able to change data in the tables while changing their structure, you
can use forward crossedition triggers to also store data in the new structure elements, e.g. a new column or
column with a changed data type, etc. If the pre- and post-upgrade applications will be in use at the same time
(known as hot rollover), then you can also use reverse crossedition triggers to store data from the post-upgrade

https://docs.oracle.com/en/database/oracle/oracle-database/23/adfns/editions.html#GUID-58DE05A0-5DEF-4791-8FA8-F04D11964906

46 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

application in the old structure elements for the pre-upgrade application to consume. Crossedition triggers are
not a permanent part of the application—you drop them once all users use the post-upgrade application version.
The most important difference between crossedition triggers and noncrossedition triggers is how they interact
with editions.

Adoption Levels
EBR is incredibly powerful, but with its power comes a certain complexity using it. Thankfully, EBR can be adopted
in levels, each additional layer providing more resilience to application changes.

Level 1
The first adoption level aims to enable backend PL/SQL API changes without incurring library cache locks.

Objects in the library cache, such as PL/SQL code, are protected from modifications via DDL locks. Normally, a
PL/SQL stored procedure that is actively used can only be replaced once all sessions have finished using it.
Replacing a busy system's core PL/SQL functionality can be very hard without quiescing the database. EBR makes
this a lot easier.

All other changes are implemented without the help of EBR features.

An example of this process is documented in the Database Development Guide, section 32.7.2.

Level 2
The next level of EBR adoption allows developers to implement PL/SQL changes in a new edition, just like with
level 1. Additionally, they use editioning views. The current version of the application is not affected; in other
words, your application code does not require cross-edition data access and tables being redefined are not
accessed by users during the application maintenance operation.

All other changes are implemented without the help of EBR features.

You can see an example of this process in the Database Development Guide, section 37.7.3.

Level 3
Adoption of level 3 implies using all previous levels, except that data must be transferred between editions. In a
select few cases, cross-edition triggers are used where the effort to implement them is low. Only the busiest tables
are cross-edition enabled.

All other changes are implemented without the help of EBR features.

You can see an example of this process in the Database Development Guide, section 37.7.4.

Level 4
Users of adoption level 4 perform all their application changes using every EBR feature available. Potentially, they
never require outages to perform application changes. However, this milestone requires a solid investment in
technology and the automation of change management processes. The difference between levels 3 and 4 is the
scope: with level 3 adoption, only a select few tables are cross-edition enabled, whereas with level 4, every table is.

You can see an example of this process in the Database Development Guide, section 37.7.4.

Potential Workflows
Before you can use EBR to upgrade your application online, you must prepare it first:

1. Editions-enable the appropriate database users and schema object types in their schemas within them.

2. Prepare your application to use editioning views if needed. An application that uses one or more tables
must cover each table with an editioning view.

The following steps represent a possible workflow for deploying application changes using EBR:

1. Create a new edition.

2. Alter your session to use the newly created edition.

https://docs.oracle.com/en/database/oracle/oracle-database/23/adfns/editions.html#GUID-984C4E1A-6A1D-4576-A217-E0904A579E90
https://docs.oracle.com/en/database/oracle/oracle-database/23/adfns/editions.html#GUID-D24DA011-7EE6-471B-9542-F7C5D10FC559
https://docs.oracle.com/en/database/oracle/oracle-database/23/adfns/editions.html#GUID-847C93E1-1001-418A-9A46-F3D3226DE8F9
https://docs.oracle.com/en/database/oracle/oracle-database/23/adfns/editions.html#GUID-847C93E1-1001-418A-9A46-F3D3226DE8F9

47 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

3. Deploy application changes.

4. Ensure that all objects are valid.

5. Perform unit testing and integration testing.

6. Make the new edition available to all users and make it the default.

Services should be used to connect to the Oracle Database, but not all services are equal. The auto-generated
service name, for example, is to be used for database administration only. All applications should connect to their
dedicated service created during the application’s initial deployment. Once the rollout of the new edition is
completed, you can change the service's edition property to point to the new edition.

Summary
Oracle Database has a proven track record of performing schema migrations online. Adding columns to tables,
creating indexes, introducing partitioning, and performing partition maintenance operations can be executed
without imposing an unnecessary burden on the application’s uptime.

Edition-based redefinition, a feature exclusive to Oracle Database, can be used for hot deployments of application
changes. Its adoption does not require a big-bang approach; it can be retrofitted using a staggered approach to
the degree you are comfortable with. Even if you decide to manage only PL/SQL changes online, huge gains can
be made compared to the standard approach. Additionally, if your application uses APIs written in PL/SQL to
decouple the frontend from the database backend, you can break the link between their respective release cycles.

48 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Bibliography
Freeman, Emily. 2019. DevOps For Dummies. s.l. : For Dummies, 2019.

Ambler, Scott W and Sadalage, J. Pramod. 2006. Evolutionary Database Design (Addison Wesley Signature
Series). s.l. : Addison-Wesley Professional, 2006.

Forsgren, Nicole, Humble, Jez and Kim, Gene. 2018. Accelerate: The Science of Lean Software and DevOps:
Building and Scaling High Performing Technology Organizations. s.l. : IT Revolution Press, 2018.

Beck, Kent. 2002. Test Driven Development: By Example. s.l. : Addison-Wesley Professional, 2002.

Chacon, Scott and Straub, Ben. 2014. Pro Git (Second Edition). s.l. : Apress, 2014.

Hammant, Paul. Trunk Based Development. [Online] [Cited: 09 12 2024.] https://trunkbaseddevelopment.com/.

Campbell, Laine and Majors, Charity. 2017. Database Reliability Engineering: Designing and Operating Resilient
Database Systems. s.l. : O'Reilly Media , 2017.

Glossary
This document uses the following terms.

Artefactory: A central location for storing artefacts generated by CI pipelines

CI: Continuous Integration

CD: Continuous Delivery (or Deployment, depending on context)

CI database: A dedicated database used as part of a CI pipeline’s execution to validate a database
 change

CI pipeline: A series of tasks, typically grouped into stages, executed with every push to the central
code repository

CI server: The CI server is responsible for scheduling and executing CI pipelines. It also presents
the results to the user, amongst a great many other things

Database release: One or more database changes, typically rolled out via SQLcl and Liquibase

EBR: Edition Based Redefinition, an online application change management interface

Git repository: A centrally managed, online code repository where all application code should be stored

Liquibase: An open-source library for managing database releases. SQLcl integrates Liquibase very
tightly and provides an opinionated Liquibase usage framework in form of SQLcl
projects

Schema migration: A script, command, or task to change the structure of a database schema by adding,
modifying, or dropping database objects.

SQLcl: Oracle SQL Developer Command Line (SQLcl) is a free command line interface for Oracle
Database

Vault: In the context of CI, vaults often refer to centrally hosted and protected key stores that
can be queries by CI pipelines to get credentials and other sensitive information

YAML: Yet Another Markup Language, a format typically employed for the definition of CI
pipelines in most CI servers

49 Implementing DevOps principles with Oracle Database / Version 1.3

 Copyright © 2025, Oracle and/or its affiliates / Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle x.com/oracle

Copyright © 2025, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document
is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of
merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or
indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written
permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Author: Martin Bach, Senior Principal Product Manager, Oracle

Contributors: Ludovico Caldara, Senior Principal Product Manager, Oracle; Connor McDonald, Architect, Oracle; Gerald Venzl, Vice President, Database Product Management, Oracle

https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle

	Introduction
	Towards a Modern Software Development Workflow
	Implementing Continuous Integration
	Continuous Delivery and Deployment
	Attributes of Continuous Integration and Delivery
	Version Control
	Fast Feedback Loops
	Automated Testing
	Small and Frequent Changes
	Automated Deployment

	The Influence of Artificial Intelligence on Software Development
	Summary

	Using Version Control Systems
	No CI/CD without the use of a version control system!
	Getting the team’s buy-in to using a version control system
	Introduction to Git
	Git Terminology
	Branching and Merging
	Pull and Merge Requests
	Forking a Project
	Your Database Project’s Git Repository
	Single Repository vs Separate Frontend and Backend Repositories
	Directory Structure

	Release Management
	Integrating with the Continuous Integration Pipeline
	Summary

	Ensuring Repeatable, Idempotent Schema Migrations
	Benefits of using Dedicated Schema Migration Tools
	Using SQLcl and Liquibase to deploy Schema Migrations
	Liquibase Terminology and Basic Concepts
	Practical Aspects of Creating the Database Changelog
	Checking the status of your deployments

	Summary

	Efficient and Quick Provisioning of Test Databases
	Autonomous Database
	Use an Oracle Exadata Database Service on Exascale Infrastructure
	Using Container Images
	Using container images with Podman or Docker
	Using Container Images with Kubernetes

	Using Container Databases
	Creating a new, empty Pluggable Database
	Cloning an existing Pluggable Database
	Automating Pluggable Database Lifecycle Management

	Using block-device Cloning Technology
	Using Copy-on-Write Technology
	Using Schema Provisioning
	Summary

	Writing effective CI/CD Pipelines
	Introduction to CI/CD Pipelines
	CI Pipeline Stages
	CI Pipeline Jobs
	Ensuring Code Quality
	Linting
	Unit Testing
	Performance Testing

	Deployment
	Updating the CI database
	Summary

	Performing Schema Changes Online
	Deploying to Production with Confidence
	Avoiding outages, however brief they might be
	Online operations
	Creating Indexes Online
	Introducing partitioning to an existing, non-partitioned table
	Compressing a segment online
	Adding Columns to Tables
	Using Online Table Redefinition to Change Table Structures Online
	Next-level Availability: Edition-Based Redefinition
	EBR Concepts
	Adoption Levels
	Level 1
	Level 2
	Level 3
	Level 4

	Potential Workflows

	Summary

	Bibliography
	Glossary

