

Oracle Advanced Compression

Proof-of-Concept Guidelines,

Insights, and Best Practices

July 2025, Version 23ai

Copyright ©2025, Oracle and/or its affiliates

Public

2 Advanced Compression POC Overview Tech Brief/ Version 23ai

 Copyright ©2025, Oracle and/or its affiliates / Public

Purpose Statement

This document provides an overview of features and enhancements included in release 23ai. It is intended solely to help

you assess the business benefits of upgrading to 23ai and planning for the implementation and upgrade of the product

features described.

Disclaimer

This document in any form, software, or printed matter, contains proprietary information that is the exclusive property

of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle

software license and service agreement, which has been executed and with which you agree to comply. This document

and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle

without prior written consent of Oracle. This document is not part of your license agreement, nor can it be incorporated

into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation

and upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality,

and should not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any

features or functionality described in this document remains at the sole discretion of Oracle. Due to the nature of the

product architecture, it may not be possible to safely include all features described in this document without risking

significant destabilization of the code.

3 Advanced Compression POC Overview Tech Brief/ Version 23ai

 Copyright ©2025, Oracle and/or its affiliates / Public

Table of Contents

Introduction 4

Overview of Compression Features 4

Advanced Row Compression (tables) 4

Enabling Compression Online 5

Comparison of Direct-Path vs. Conventional-Path Loads 6

AWR and Direct-Path/Conventional Path Loads 6

Advanced Index Compression (indexes) 7

RMAN Backup Compression (Backups) 8

Advanced LOB Compression (SecureFiles LOBs) 8

Advanced LOB Deduplication (SecureFiles LOBs) 9

Considerations Before Testing Starts 9

About Compression Overhead 10

Improving Compression Ratios 10

What Does a Typical Proof-of-Concept Look Like? 11

Get Started with Compression Advisor (with Example) 12

Appendix A 13

More Information 14

4 Advanced Compression POC Overview Tech Brief/ Version 23ai

 Copyright ©2025, Oracle and/or its affiliates / Public

About This Document

This document is not a step-by-step guide to performing a compression proof-of-concept. Instead, this

document provides compression guidelines/best practices learned from users testing, as well as other insights to

you help plan your compression proof-of-concept. As well as help you understand the results of your proof-of-

concept.

Introduction

The massive growth in data volumes experienced by enterprises introduces significant challenges. Companies

must quickly adapt to the changing business landscape without influencing the bottom line. Organizations need

to efficiently manage their existing infrastructure to control costs yet continue to deliver application query

performance.

Advanced Compression, and Oracle Database, together provide a robust set of compression, performance and

data storage optimization capabilities that enable organizations to succeed in this complex environment.

Whether it is a cloud, or on-premise database, Advanced Compression can deliver robust compression across

different environments with no changes in SQL, or applications. Benefits from Oracle Advanced Compression

typically include smaller database storage footprint, time and storage savings in backups, and improved query

performance.

Overview of Compression Features

Advanced Row Compression (tables)

Advanced Row Compression maintains compression during all types of data manipulation operations, including

conventional DML such as INSERT and UPDATE. In addition, Advanced Row Compression minimizes the

overhead of write operations on compressed data, making it suitable for OLTP environments, as well as data

warehouses (DW), extending the benefits of compression to all application workloads.

Advanced Row Compression uses an algorithm that eliminates duplicate values within a database block, even

across multiple columns. Compressed blocks contain a structure called a symbol table that maintains

compression metadata. When a block is compressed, duplicate values are eliminated by first adding a single

copy of the duplicate value to the symbol table. Each duplicate value is then replaced by a short reference to the

appropriate entry in the symbol table.

Through this innovative design, compressed data is self-contained within the database block, as the metadata

used to translate compressed data into its original state is stored in the block header. When compared with

competing compression algorithms that maintain a global database symbol table, Oracle’s approach offers

significant benefits by not introducing additional IO (needed with a global symbol table) when accessing

compressed data.

The compression ratio achieved in each environment depends on the data being compressed, specifically the

cardinality of the data. In general, organizations can expect to reduce their storage space consumption by a

factor of up to 2x to 4x, when using Advanced Row Compression. That is, the amount of space consumed by

uncompressed data will be two, to four times, larger than that of the compressed data.

But the benefits of Advanced Row Compression go beyond just on-disk storage savings. A key query

performance advantage is the database’s ability to read compressed blocks (data and indexes) directly, in

memory, without uncompressing the blocks. This can help improve query performance due to the reduction in

IO, and the reduction in system calls (and CPU) related to the IO operations. Further, the buffer cache

becomes more efficient by storing more data, without having to add memory.

5 Advanced Compression POC Overview Tech Brief/ Version 23ai

 Copyright ©2025, Oracle and/or its affiliates / Public

Enabling Compression Online

For new tables, enabling Advanced Row Compression is easy. Simply CREATE the table or partition and specify

“ROW STORE COMPRESS ADVANCED”.

For example:

CREATE TABLE emp (emp_id NUMBER, first_name VARCHAR2(128), last_name

VARCHAR2(128)) ROW STORE COMPRESS ADVANCED;

There are numerous ways to enable Advanced Row Compression online, for existing tables.

While a complete discussion of each method is beyond the scope of this document, this document does provide

an overview of the methods typically used.

Online Redefinition (DBMS_REDEFINITION)

This approach will enable Advanced Row Compression for future DML and will compress existing data. Using

DBMS_REDEFINITION keeps the table online for both read/write activity during the migration while the

table, partition or subpartition is being rebuilt with compression enabled.

Run DBMS_REDEFINITION in parallel for best performance.

ALTER TABLE MOVE ONLINE

This approach will enable Advanced Row Compression for future DML and will compress existing

data. ALTER TABLE ... MOVE ONLINE allows DML operations to continue to run uninterrupted on the table,

partition, or subpartition being rebuilt to enable compression.

Run DBMS_REDEFINITION in parallel for best performance.

Please see the More Information section below for additional details, usage examples, and restrictions regarding

the operations discussed above.

Compression and Direct-Path Loads and Conventional-Path Loads

Direct-Path Loads

Performed when data is inserted using the direct-path load mechanisms, such as insert with an append hint or

using SQL*Loader. In this case, the data is inserted above the segment high water mark (a virtual last used block

marker for a segment) and can be written out to data blocks very efficiently. The compression engine has a

large volume of rows to work with and can buffer, compress, and write out compressed rows to the data

block(s). As a result, the space savings are immediate.

Rows are never written in an uncompressed format with Direct-Path load compression.

Conventional-Path Loads

Invoked on conventional DML operations, such as single row or array inserts and updates. The database writes

out the rows in uncompressed format, and when the data block reaches an internal block fullness threshold,

compression is invoked. Under such a scenario, Oracle can compress the data block in a recursive transaction,

which is committed immediately after compression.

The space saved due to compression is immediately released and can be used by any additional transactions.

Compression is triggered by the user DML operation (user transaction), but actual compression of data happens

in a recursive transaction, the fate of compression is therefore not tied to the fate of the user’s transaction.

6 Advanced Compression POC Overview Tech Brief/ Version 23ai

 Copyright ©2025, Oracle and/or its affiliates / Public

Comparison of Direct-Path vs. Conventional-Path Loads

Performing bulk-load operations and choosing either direct-path or conventional-path methods can have a

significant influence regarding load performance. Users performing bulk-load insert operations may see slower

insert performance, particularly if they are inserting many rows using a conventional-path load.

The reason why conventional-path loads may be slower, for many rows, is that as the new rows are inserted

into existing compressed blocks, the inserts are performed uncompressed. If additional inserts are performed, on

the same block, and the block begins to fill, when the internal threshold of the block (not user controllable) is

again met, the block will be compressed again. If additional space is freed up after the compression, then inserts

will again be performed on the block, leading to compression again, possibly multiple more times for the same

block, during the same conventional-path load operation.

This means that when using conventional-path inserts it is possible that the same block will be compressed,

multiple times, during the same operation – consuming CPU resources and time. If the workload is dominated

by conventional-path inserts, then it is likely there will be more IO if a block is recompressed repeatedly.

Direct-path loads are preferred, if possible, when operating on larger numbers of rows since, unlike

conventional-path loads, direct-path loads are done above the high-water mark, so blocks are filled and

compressed only once, and then written to disk. This streamlines the bulk inserts and avoids the multiple

compressions of the same block, which is possible when performing bulk inserts using conventional-path loads.

AWR and Direct-Path/Conventional Path Loads

If during proof-of-concept testing, you are unsure if loads are using direct-path or conventional-path load

methods, you can utilize these suggested steps (with AWR) to determine the amount of compression occurring

during the SQL operation.

Determining Conventional-Path Load Compressions

AWR has an “Instance Activity Stats” section that will list the statistics associated with the total number of

positive compressions (HSC OLTP positive compression) and the total number of negative compressions (HSC

OLTP negative compression). Adding these two statistics will give you the total number of attempted

compressions (re-compressions or otherwise).

• HSC OLTP positive compression + HSC OLTP negative compression = Total number of

attempted compressions and re-compressions (conventional-path load)

Determining Direct-Path Load Compressions

When performing bulk loads using direct-path methods such as “insert append” the data is organized into data

blocks and compressed in memory, this means that the bulk load data is compressed only once.

The data blocks are filled to the point specified by the tables PCTFREE setting -- the default setting for

PCTFREE in Oracle Database is 10% (PCTFREE allows space to be reserved on the data blocks for possible

growth during SQL UPDATE operations).

For block compressions above the High-Water Mark (HWM), such as in Create Table as Select (CTAS) or insert

append cases, there is a statistic called HSC IDL Compressed Blocks.

• HSC IDL Compressed Blocks = Block compressions above the HWM (direct-path load

such as in CTAS or insert append)

If you only see values for HSC OLTP positive Compression and HSC OLTP negative compression statistics

and no/few values for the HSC IDL Compressed Blocks statistic, then all the compression occurring is from

conventional path operations (in particular, see how many compressions are occurring per second).

7 Advanced Compression POC Overview Tech Brief/ Version 23ai

 Copyright ©2025, Oracle and/or its affiliates / Public

If possible and feasible, you could consider modifying bulk inserts so that direct-path loading is performed

instead of conventional-path loads for the same operation(s). In doing so, you should see a larger value for the

HSC IDL Compressed Blocks statistic.

If there is no statistic labeled HSC IDL Compressed Blocks this means that there was no block compression

above the HWM.

Advanced Index Compression (indexes)

Advanced Index Compression, a feature of Advanced Compression, helps automate index compression so that a

DBA is no longer required to specify the number of prefix columns to consider for compression (as is required

with Index Key Compression).

Advanced Index Compression is an enabling technology for multiple compression levels – LOW and HIGH.

Average compression ratios can range from up to 2x to 5x, depending on which compression level is

implemented.

Enabling Advanced Index Compression

Advanced Index Compression can be enabled by specifying the COMPRESS ADVANCED sub-clause of the

CREATE/ALTER INDEX clause. New indexes can be automatically created as compressed, or existing indexes

can be rebuilt compressed. For new indexes, enabling Advanced Row Compression is easy.

Simply CREATE the index and specify “COMPRESS ADVANCED LOW”.

For example:

CREATE INDEX idxname ON tabname(col1, col2, col3) COMPRESS ADVANCED LOW;

Advanced Index Compression works well on all supported indexes, including those indexes that are not good

candidates, which includes:

• Indexes with no duplicate values, or few duplicate values for given number of

leading columns of the index.

Advanced Index Compression supports two levels of compression – LOW and HIGH.

• Advanced Index Compression (LOW) simplifies index key compression. When

compressing an index, it automatically computes an optimal prefix count for every

index leaf block in the index, rather than using a static prefix count for all index leaf

block as is done with Prefix Compression

o LOW compression is for both OLTP and data warehouse

applications

• Advanced Index Compression (HIGH) works at the block level to provide the best

compression for each block. This means that users do not need knowledge of data

characteristics – Advanced Index Compression automatically chooses the right

compression per block. The “HIGH” level of Advanced Index Compression can

provide significant space savings

o HIGH compression is for applications that are read only/mostly,

such as data warehouse applications

Advanced Index Compression has following limitations:

• Advanced Index Compression is not supported on Bitmap Indexes

8 Advanced Compression POC Overview Tech Brief/ Version 23ai

 Copyright ©2025, Oracle and/or its affiliates / Public

• Functional Indexes are not supported with Advanced Index Compression

Note that Index-Organized Tables (IOT's) are essentially indexes, so they cannot be compressed with Advanced

Row Compression or Basic Compression. However, IOT’s can be compressed with Advanced Index

Compression LOW.

RMAN Backup Compression (Backups)

Due to RMAN’s tight integration with Oracle compression, blocks that are already compressed remain

compressed during RMAN backups, and do not need to be uncompressed before recovery. Providing a

reduction in backup storage requirements, and a potential reduction in backup, and restore, times.

Regarding compressing the backup, RMAN Basic compression delivers a very good compression ratio, but can

sometimes be CPU intensive, and CPU availability can be a limiting factor in the performance of backups and

restores.

There are three additional levels of RMAN backup compression provided by Advanced Compression: LOW,

MEDIUM, and HIGH. The amount of storage savings increases from LOW to HIGH, while potentially

consuming more CPU resources. LOW / MEDIUM / HIGH compression is designed to deliver varying levels of

compression, while typically using less CPU than RMAN Basic Compression.

The three levels can be categorized as such:

• HIGH - Best suited for backups over slower networks where the limiting factor is network

speed

• MEDIUM - Recommended for most environments. Good combination of compression ratios

and speed

• LOW -Least impact on backup throughput and suited for environments where CPU resources

are the limiting factor

If you are IO-limited, but have idle CPU, then HIGH could work best, as it uses more CPU, but saves the most

space and thus gives the biggest decrease in the number of IOs required to write the backup files.

On the other hand, if you are CPU-limited, then LOW or MEDIUM probably makes more sense. Less CPU is

used, and about 80% of the space savings will typically be realized (compared to the Basic compression included

with RMAN).

Advanced LOB Compression (SecureFiles LOBs)

It is usually possible to improve a table’s compression ratio by storing LOBs out-of-line in SecureFiles LOB

segments, with Advanced LOB Compression, instead of storing LOBs in-line.

When LOBS are stored in-line, Advanced Row Compression will try to compress the inline LOBs. Advanced

Row Compression depends upon deduplication to reduce the size of a block. With unstructured data stored in-

line, it is unlikely that a duplicate of that unstructured data will be in the same block, and this means that the

unstructured data in the block, which can often be quite large, will not be compressed. This can lead to lower-

than-expected overall compression ratios for the table.

Advanced LOB Compression, however, uses a different compression algorithm and can often compress

unstructured data stored in SecureFiles LOB segments that cannot be compressed when stored in-line.

There are three levels of Advanced LOB Compression: LOW, MEDIUM, and HIGH:

• By default, Advanced LOB Compression uses the MEDIUM level, which typically provides

good compression with a modest CPU overhead

9 Advanced Compression POC Overview Tech Brief/ Version 23ai

 Copyright ©2025, Oracle and/or its affiliates / Public

• Advanced LOB Compression LOW is optimized for high performance. Advanced LOB

Compression LOW maintains about 80% of the compression achieved through MEDIUM,

while utilizing less CPU

• Advanced LOB Compression HIGH achieves the highest storage savings but incurs the most

CPU overhead

If the database detects if SecureFiles data is compressible and will compress using industry standard

compression algorithms. If the compression does not yield any savings or if the data is already compressed,

SecureFiles will turn off compression for such LOBs.

Advanced LOB Deduplication (SecureFiles LOBs)

Advanced LOB Deduplication enables Oracle Database to automatically detect duplicate LOB data, within a

LOB column or partition, and conserve space by storing only one copy of the data. Note that Advanced LOB

Deduplication is a feature of Advanced Compression.

You can estimate the space, that you can save, before enabling Advanced LOB Deduplication. This allows you

to make an informed decision whether or not to enable LOB deduplication as well as decide whether you want

to deduplicate the resultant SecureFiles LOB, before migrating BasicFiles LOBs to SecureFiles LOBs.

The GET_LOB_DEDUPLICATION_RATIO function estimates the storage space that you can save by enabling the

deduplication feature, for existing SecureFiles LOBs and returns the deduplication ratio.

Syntax

DBMS_LOB.GET_LOB_DEDUPLICATION_RATIO (

 tablespacename IN VARCHAR2,

 tabowner IN VARCHAR2,

 loccolumnname IN VARCHAR2,

 partname IN VARCHAR2,

 dedup_ratio IN NUMBER,

 subset_numrows IN NUMBER DEFAULT

DEDUP_RATIO_LOB_MAXROWS

);

The deduplication ratio (dedup_ratio) is estimated for the number of rows in the LOB column that you specify , the

syntax above uses DEDUP_RATIO_LOB_MAXROWS to specify all rows be included in the estimate.

The LOB storage savings depends upon the deduplication ratio achieved. For example, say that the

deduplication advisor estimated a deduplication ratio of up to 2.33x, this means that generally, the amount of

space consumed by the LOBs, without deduplication, will be up to 2.33 times larger.

Considerations Before Testing Starts

As part of the proof-of-concept pre-test planning, make note and act (as needed) on the following compression

suggested best practices:

▪ If feasible, upgrade to the latest release (or apply any critical patches to the current release)

▪ Define Success Criteria for the proof-of-concept (data, index and backup storage reduction,

query/insert/update performance, bulk load operations performance, application performance

etc.….)

▪ Ensure compressed columns have no “long” data types – this data type isn’t supported by

Advanced Row compression

10 Advanced Compression POC Overview Tech Brief/ Version 23ai

 Copyright ©2025, Oracle and/or its affiliates / Public

▪ Ensure compressed tables/partitions have less than 255 columns (this limit was removed in

Oracle Database 12c and above). See Oracle MOS Note 1612095.1 for additional information

▪ Although CPU overhead is typically minimal, implementing table, index and LOB

compression is best suited on systems with available CPU cycles, as compression will have

additional, although minor, overhead for some DML operations

▪ The best test environment for each compression capability is where you can most closely

duplicate the production environment. This will provide the most realistic (pre- and post-

compression) performance and functionality comparisons

▪ The general recommendation is to compress all the application related tables in the database

with one exception: if the table is used as a queue. That is, if the rows are inserted into the

table, then later most or all the rows are deleted, then more rows are inserted and then again

deleted. This type of activity is not a good use case for compression due to the overhead to

constantly compress rows that are transient in nature

▪ Advanced Compression works well with Oracle’s tablespace-level Transparent Data

Encryption (TDE). With tablespace-level encryption, compression is done before encryption,

so the compression ratio is not affected by the encryption. With TDE column-level

encryption, the encryption is done before compression, which will negatively impact the

compression ratio

About Compression Overhead

Before performing a proof-of-concept users sometime speculate that the overhead of decompression could

influence query performance. However, in practice, this is typically unlikely.

Advanced Row and Advanced Index compressed blocks are never "decompressed" at the block level, and for

most queries, individual rows are not decompressed either. Most queries can operate directly on the compressed

format in the database blocks in memory and most query predicates operate directly on compressed data

formats, and only values required for the later stages of the query are decompressed.

There is typically not an increase in overhead for queries on compressed data/indexes, and there is usually a

decrease because of the reduction in IO to query a given amount of user data. If the data is compressed at a 3x

ratio, for example, then it takes only 1/3 the amount of IO to read that data from disk and into the buffer cache

when using compression. While it is true that there can be a few "extra" instruction cycles to dereference

pointers inside compressed data blocks to extract column values, this is usually more than offset by the

reduction in IO.

But to be truly sure of any potential overhead associated with compression, it is recommended to test using

your organizations data, applications and test environment that simulates how compression will be used in

production.

Improving Compression Ratios

The compression ratio of a particular table/partition is primarily related to the amount of duplication that exists,

at the block level. The higher the amount of duplication then the higher the compression ratio, and the more

unique the data, then the lower the compression ratio.

If the data is unique, then it is very possible that the table/partition will not compress well or at all.

There are some things you can try to possibly increase the compression ratio for a particular table. As usual, you

should test any changes, using your data, applications, and systems to determine the impact any such changes

will have in your environment.

11 Advanced Compression POC Overview Tech Brief/ Version 23ai

 Copyright ©2025, Oracle and/or its affiliates / Public

Sorting Data

It may be possible to improve a table’s compression ratio by presorting the data when it is

loaded. You will have to decide which column(s) to sort on based on the cardinality of the

data in each column. If you can, sort on a column that has a small number of distinct

values, which could produce better compression ratios.

However, presorting will require additional preparation of the data before loading. You

will need to weigh that additional time versus any compression ratio gain. Test with your

own data to determine if data sorting will have an impact on your compression ratio.

Larger Block Size

It is possible a larger block size will have a better compression ratio if the larger block has

more duplication on the block. However, larger blocks do not always ensure higher

compression ratios. Test with your own data to determine if larger block sizes will have an

impact on your compression ratio.

What Does a Typical Proof-of-Concept Look Like?

As indicated earlier, it is important to note that the best test environment for each compression feature is where

you can most closely duplicate the production environment. This will provide the most realistic (pre- and post-

compression) performance and functionality comparisons.

Generally, the Advanced Compression features that are tested during a compression proof-of-concept includes:

• Advanced Row Compression

• Advanced Index Compression

• RMAN Backup Compression

• Advanced LOB Compression

• Data Guard Redo Transport Compression

While Advanced Compression does include numerous other features, the above are the features most typically

included in a proof-of-concept.

You may choose to include other Advanced Compression features, or not include some of these features.

In terms of the actual proof-of-concept, customers often indicate the following:

• Before proof-of-concept testing, estimate compression ratios (storage reduction) for structured

data, indexes, and unstructured data. Compression Advisor (see below) can be used to estimate

Advanced Row Compression, Advanced Index Compression and Advanced LOB Compression

ratios

• Use testing to identify performance improvements and any possible performance impact from

compression. Determine this by running your applications, using your data on test platforms

(similar to your production hardware), and profiling the performance before and after

compression. Ideally, the application testing includes application queries, bulk load operations

using both conventional-path and direct-path loads, single row DML (i.e., conventional insert,

update and delete operations) and RMAN backups

• While the general suggestion is to compress all tables, some organizations instead choose only

to compress the largest tables that account for approximately 80%+ of their data storage

requirements

12 Advanced Compression POC Overview Tech Brief/ Version 23ai

 Copyright ©2025, Oracle and/or its affiliates / Public

• MOS note Doc ID 729551.1 is useful for information about estimating compression savings

when using Data Guard Redo Transport Compression

• If available, Oracle’s Real Application Testing (RAT) product can be a useful tool for a

compression Proof-of-concept

Get Started with Compression Advisor (with Example)

An easy way to get started, with Advanced Compression, is by using compression advisor. The

“DBMS_COMPRESSION” PL/SQL package (commonly called compression advisor) gathers compression-related

information within a database environment.

This includes estimating the compressibility of both uncompressed partitioned, and non-partitioned tables, and

gathering row-level compression information on previously compressed tables/partitions. Compression advisor

provides organizations with the storage reduction information needed to make compression-related usage

decisions.

Example:

Running advisor, for Advanced Row Compression, against a table called ORDERS in a schema called FOO

which resides in the FOO tablespace.

set serveroutput on
DECLARE
blkcnt_cnt pls_integer;
blkcnt_uncmp pls_integer;
blkcnt_cmp pls_integer;
row_cmp pls_integer;
row_uncmp pls_integer;
cmp_ratio pls_integer;
comptype_str varchar2(100);
BEGIN
DBMS_COMPRESSION.GET_COMPRESSION_RATIO ('FOO', 'FOO', 'ORDERS', '',
DBMS_COMPRESSION.COMP_ADVANCED, blkcnt_cmp, blkcnt_uncmp, row_cmp, row_uncmp, cmp_ratio,
comptype_str);
DBMS_OUTPUT.PUT_LINE('Block count compressed = '|| blkcnt_cmp);
DBMS_OUTPUT.PUT_LINE('Block count uncompressed = '|| blkcnt_uncmp);
DBMS_OUTPUT.PUT_LINE('Row count per block compressed = '|| row_cmp);
DBMS_OUTPUT.PUT_LINE('Row count per block uncompressed = '|| row_uncmp);
DBMS_OUTPUT.PUT_LINE('Compression type = '|| comptype_str);
DBMS_OUTPUT.PUT_LINE('Compression ratio = '|| cmp_ratio);
END;

Block count compressed = 1009

Block count uncompressed = 1672

Row count per block compressed = 117

Row count per block uncompressed = 70

Compression type = "Compress Advanced"

Compression ratio = 2

PL/SQL procedure successfully completed.
The output of running compression advisor is an estimation of the compression ratio for the specific table or

partition that was the target of compression advisor. The output, as shown above, indicates the

“COMPRESSION RATIO” presented as a number such as 2.

13 Advanced Compression POC Overview Tech Brief/ Version 23ai

 Copyright ©2025, Oracle and/or its affiliates / Public

This number indicates that, for this specific table, the estimated compression ratio is 2x, which represents about

a 50% reduction in the footprint of the table or partition should compression be enabled.

DBMS_COMPRESSION is included with Oracle Database Enterprise Edition.

Appendix A

See below, for a simple example of what a compression proof-of-concept may look like as illustrated in a multi-step

process.

Apply all Relevant Patches (optionally upgrade to latest release – if feasible)

– Upgrade to latest release if applicable

– Apply patches

Define Success Criteria

– Database performance

– Database size

– Backup space reduction

– Backup time/restore time

– Application performance

– Data Guard (if applicable)

– Data Pump Compression (if applicable)

Compression Advisor -- DBMS_COMPRESSION

– Obtain compression ratio estimates for tables, indexes and SecureFiles LOBs.

– Determine the overall list of tables, indexes and SecureFiles LOBS to be compressed

Baseline Before Compression in Test Environment: Production Workload

– Gather database performance data (including bulk load operations, queries, inserts/updates etc.…)

– Gather backup/restore times

– Gather Data Guard performance data (if applicable)

– Gather database size for tables/indexes

– Gather backup size

– Gather Data Pump file size

– Gather AWR reports

Implement Compression in Test Environment

– Compress all candidate tables/indexes identified using preferred method (online/offline)

– Perform bulk load operations and compare against baseline

– Run SQL statements (query/insert/update) and compare against baseline

– Perform SQL tuning adjustments for non-performing queries (if any)

– Run production workload and verify performance

14 Advanced Compression POC Overview Tech Brief/ Version 23ai

 Copyright ©2025, Oracle and/or its affiliates / Public

– Gather AWR Reports and compare to baseline

Prepare for Production Cutover

– Lessons Learned

– Document all the benefits and issues/resolutions encountered during Proof-of-concept

– Define cutover plan

More Information

• See the PL/SQL Packages and Types Reference for more information, and usage examples, about

the DBMS_SECUREFILES.GET_LOB_DEDUPLICATION_RATIO function, Compression Advisor

(DBMS_COMPRESSION) and Online Redefinition (DBMS_REDEFINITION)

• See the Oracle Database Administrator’s Guide documentation for more information about Oracle

compression.

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2025, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted

to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular

purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be

reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

