ORACLE

N

Oracle Advanced Compression
Proof-of-Concept Guidelines,
Insights, and Best Practices

July 2025, Version 23ai
Copyright ©2025, Oracle and/or its affiliates
Public

- B N

ORACLE

Purpose Statement

This document provides an overview of features and enhancements included in release 23ai. It is intended solely to help
you assess the business benefits of upgrading to 23ai and planning for the implementation and upgrade of the product
features described.

Disclaimer

This document in any form, software, or printed matter, contains proprietary information that is the exclusive property
of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle
software license and service agreement, which has been executed and with which you agree to comply. This document
and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of your license agreement, nor can it be incorporated
into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation
and upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality,
and should not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any
features or functionality described in this document remains at the sole discretion of Oracle. Due to the nature of the
product architecture, it may not be possible to safely include all features described in this document without risking
significant destabilization of the code.

2 Advanced Compression POC Overview Tech Brief/ Version 23ai

Copyright ©2025, Oracle and/or its affiliates / Public

=) ~

ORACLE

Table of Contents

Introduction

Overview of Compression Features

Advanced Row Compression (tables)

Enabling Compression Online

Comparison of Direct-Path vs. Conventional-Path Loads
AWR and Direct-Path/Conventional Path Loads
Advanced Index Compression (indexes)

RMAN Backup Compression (Backups)

Advanced LOB Compression (SecureFiles LOBs)
Advanced LOB Deduplication (SecureFiles LOBs)
Considerations Before Testing Starts

About Compression Overhead

Improving Compression Ratios

‘What Does a Typical Proof-of-Concept Look Like?
Get Started with Compression Advisor (with Example)
Appendix A

More Information

3 Advanced Compression POC Overview Tech Brief/ Version 23ai

Copyright ©2025, Oracle and/or its affiliates / Public

|

O WO 00 00 N O O 1

L O S Sy
B W N = © ©

ORACLE

About This Document

This document is not a step-by-step guide to performing a compression proof-of-concept. Instead, this
document provides compression guidelines/best practices learned from users testing, as well as other insights to
you help plan your compression proof-of-concept. As well as help you understand the results of your proof-of-
concept.

Introduction

The massive growth in data volumes experienced by enterprises introduces significant challenges. Companies
must quickly adapt to the changing business landscape without influencing the bottom line. Organizations need
to efficiently manage their existing infrastructure to control costs yet continue to deliver application query
performance.

Advanced Compression, and Oracle Database, together provide a robust set of compression, performance and
data storage optimization capabilities that enable organizations to succeed in this complex environment.

Whether it is a cloud, or on-premise database, Advanced Compression can deliver robust compression across
different environments with no changes in SQL, or applications. Benefits from Oracle Advanced Compression
typically include smaller database storage footprint, time and storage savings in backups, and improved query
performance.

Overview of Compression Features
Advanced Row Compression (tables)

Advanced Row Compression maintains compression during all types of data manipulation operations, including
conventional DML such as INSERT and UPDATE. In addition, Advanced Row Compression minimizes the
overhead of write operations on compressed data, making it suitable for OLTP environments, as well as data
warehouses (DW), extending the benefits of compression to all application workloads.

Advanced Row Compression uses an algorithm that eliminates duplicate values within a database block, even
across multiple columns. Compressed blocks contain a structure called a symbol table that maintains
compression metadata. When a block is compressed, duplicate values are eliminated by first adding a single
copy of the duplicate value to the symbol table. Each duplicate value is then replaced by a short reference to the
appropriate entry in the symbol table.

Through this innovative design, compressed data is self-contained within the database block, as the metadata
used to translate compressed data into its original state is stored in the block header. When compared with
competing compression algorithms that maintain a global database symbol table, Oracle’s approach offers
significant benefits by not introducing additional IO (needed with a global symbol table) when accessing
compressed data.

The compression ratio achieved in each environment depends on the data being compressed, specifically the
cardinality of the data. In general, organizations can expect to reduce their storage space consumption by a
factor of up to 2x to 4x, when using Advanced Row Compression. That is, the amount of space consumed by
uncompressed data will be two, to four times, larger than that of the compressed data.

But the benefits of Advanced Row Compression go beyond just on-disk storage savings. A key query
performance advantage is the database’s ability to read compressed blocks (data and indexes) directly, in
memory, without uncompressing the blocks. This can help improve query performance due to the reduction in
IO, and the reduction in system calls (and CPU) related to the IO operations. Further, the buffer cache
becomes more efficient by storing more data, without having to add memory.

4 Advanced Compression POC Overview Tech Brief/ Version 23ai

Copyright ©2025, Oracle and/or its affiliates / Public

|

ORACLE

Enabling Compression Online

For new tables, enabling Advanced Row Compression is easy. Simply CREATE the table or partition and specify
“ROW STORE COMPRESS ADVANCED”.

For example:

CREATE TABLE emp (emp_id NUMBER, first_name VARCHAR2(128), last_name
VARCHAR2(128)) ROW STORE COMPRESS ADVANCED;

There are numerous ways to enable Advanced Row Compression online, for existing tables.

While a complete discussion of each method is beyond the scope of this document, this document does provide
an overview of the methods typically used.

Online Redefinition (DBMS_REDEFINITION)

This approach will enable Advanced Row Compression for future DML and will compress existing data. Using
DBMS_REDEFINITION keeps the table online for both read/write activity during the migration while the
table, partition or subpartition is being rebuilt with compression enabled.

Run DBMS_REDEFINITION in parallel for best performance.
ALTER TABLE MOVE ONLINE

This approach will enable Advanced Row Compression for future DML and will compress existing
data. ALTER TABLE ... MOVE ONLINE allows DML operations to continue to run uninterrupted on the table,
partition, or subpartition being rebuilt to enable compression.

Run DBMS_REDEFINITION in parallel for best performance.

Please see the More Information section below for additional details, usage examples, and restrictions regarding
the operations discussed above.

Compression and Direct-Path Loads and Conventional-Path Loads
Direct-Path Loads

Performed when data is inserted using the direct-path load mechanisms, such as insert with an append hint or
using SQL*Loader. In this case, the data is inserted above the segment high water mark (a virtual last used block
marker for a segment) and can be written out to data blocks very efficiently. The compression engine has a
large volume of rows to work with and can buffer, compress, and write out compressed rows to the data
block(s). As a result, the space savings are immediate.

Rows are never written in an uncompressed format with Direct-Path load compression.
Conventional-Path Loads

Invoked on conventional DML operations, such as single row or array inserts and updates. The database writes
out the rows in uncompressed format, and when the data block reaches an internal block fullness threshold,
compression is invoked. Under such a scenario, Oracle can compress the data block in a recursive transaction,
which is committed immediately after compression.

The space saved due to compression is immediately released and can be used by any additional transactions.
Compression is triggered by the user DML operation (user transaction), but actual compression of data happens
in a recursive transaction, the fate of compression is therefore not tied to the fate of the user’s transaction.

5 Advanced Compression POC Overview Tech Brief/ Version 23ai

Copyright ©2025, Oracle and/or its affiliates / Public

|

ORACLE

Comparison of Direct-Path vs. Conventional-Path Loads

Performing bulk-load operations and choosing either direct-path or conventional-path methods can have a
significant influence regarding load performance. Users performing bulk-load insert operations may see slower
insert performance, particularly if they are inserting many rows using a conventional-path load.

The reason why conventional-path loads may be slower, for many rows, is that as the new rows are inserted
into existing compressed blocks, the inserts are performed uncompressed. If additional inserts are performed, on
the same block, and the block begins to fill, when the internal threshold of the block (not user controllable) is
again met, the block will be compressed again. If additional space is freed up after the compression, then inserts
will again be performed on the block, leading to compression again, possibly multiple more times for the same
block, during the same conventional-path load operation.

This means that when using conventional-path inserts it is possible that the same block will be compressed,
multiple times, during the same operation — consuming CPU resources and time. If the workload is dominated
by conventional-path inserts, then it is likely there will be more IO if a block is recompressed repeatedly.

Direct-path loads are preferred, if possible, when operating on larger numbers of rows since, unlike
conventional-path loads, direct-path loads are done above the high-water mark, so blocks are filled and
compressed only once, and then written to disk. This streamlines the bulk inserts and avoids the multiple
compressions of the same block, which is possible when performing bulk inserts using conventional-path loads.

AWR and Direct-Path/Conventional Path Loads

If during proof-of-concept testing, you are unsure if loads are using direct-path or conventional-path load
methods, you can utilize these suggested steps (with AWR) to determine the amount of compression occurring
during the SQL operation.

Determining Conventional-Path Load Compressions

AWR has an “Instance Activity Stats” section that will list the statistics associated with the total number of
positive compressions (HSC OLTP positive compression) and the total number of negative compressions (HSC
OLTP negative compression). Adding these two statistics will give you the total number of attempted

compressions (re-compressions or otherwise).

e HSC OLTP positive compression + HSC OLTP negative compression = Total number of
attempted compressions and re-compressions (conventional-path load)

Determining Direct-Path Load Compressions

When performing bulk loads using direct-path methods such as “insert append” the data is organized into data
blocks and compressed in memory, this means that the bulk load data is compressed only once.

The data blocks are filled to the point specified by the tables PCTFREE setting -- the default setting for
PCTFREE in Oracle Database is 10% (PCTFREE allows space to be reserved on the data blocks for possible
growth during SQL UPDATE operations).

For block compressions above the High-Water Mark (HWM), such as in Create Table as Select (CTAS) or insert
append cases, there is a statistic called HSC IDL Compressed Blocks.

e HSC IDL Compressed Blocks = Block compressions above the HWM (direct-path load
such as in CTAS or insert append)

If you only see values for HSC OLTP positive Compression and HSC OLTP negative compression statistics
and no/few values for the HSC IDL Compressed Blocks statistic, then all the compression occurring is from
conventional path operations (in particular, see how many compressions are occurring per second).

6 Advanced Compression POC Overview Tech Brief/ Version 23ai

Copyright ©2025, Oracle and/or its affiliates / Public

Y ~

ORACLE

If possible and feasible, you could consider modifying bulk inserts so that direct-path loading is performed
instead of conventional-path loads for the same operation(s). In doing so, you should see a larger value for the
HSC IDL Compressed Blocks statistic.

If there is no statistic labeled HSC IDL Compressed Blocks this means that there was no block compression
above the HWM.

Advanced Index Compression (indexes)

Advanced Index Compression, a feature of Advanced Compression, helps automate index compression so that a
DBA is no longer required to specify the number of prefix columns to consider for compression (as is required
with Index Key Compression).

Advanced Index Compression is an enabling technology for multiple compression levels - LOW and HIGH.
Average compression ratios can range from up to 2x to 5x, depending on which compression level is
implemented.

Enabling Advanced Index Compression

Advanced Index Compression can be enabled by specifying the COMPRESS ADVANCED sub-clause of the
CREATE/ALTER INDEX clause. New indexes can be automatically created as compressed, or existing indexes
can be rebuilt compressed. For new indexes, enabling Advanced Row Compression is easy.

Simply CREATE the index and specify “COMPRESS ADVANCED LOW”.
For example:
CREATE INDEX idxname ON tabname(coll, col2, col3) COMPRESS ADVANCED LOW;

Advanced Index Compression works well on all supported indexes, including those indexes that are not good
candidates, which includes:

¢ Indexes with no duplicate values, or few duplicate values for given number of
leading columns of the index.

Advanced Index Compression supports two levels of compression - LOW and HIGH.

e Advanced Index Compression (LOW) simplifies index key compression. When
compressing an index, it automatically computes an optimal prefix count for every
index leaf block in the index, rather than using a static prefix count for all index leaf
block as is done with Prefix Compression

o LOW compression is for both OLTP and data warehouse
applications

e Advanced Index Compression (HIGH) works at the block level to provide the best
compression for each block. This means that users do not need knowledge of data
characteristics — Advanced Index Compression automatically chooses the right
compression per block. The “HIGH” level of Advanced Index Compression can
provide significant space savings

o HIGH compression is for applications that are read only/mostly,
such as data warehouse applications

Advanced Index Compression has following limitations:

e Advanced Index Compression is not supported on Bitmap Indexes

7 Advanced Compression POC Overview Tech Brief/ Version 23ai

Copyright ©2025, Oracle and/or its affiliates / Public

Y ~

ORACLE

e Functional Indexes are not supported with Advanced Index Compression

Note that Index-Organized Tables (IOT's) are essentially indexes, so they cannot be compressed with Advanced
Row Compression or Basic Compression. However, IOT’s can be compressed with Advanced Index
Compression LOW.

RMAN Backup Compression (Backups)

Due to RMAN’s tight integration with Oracle compression, blocks that are already compressed remain
compressed during RMAN backups, and do not need to be uncompressed before recovery. Providing a
reduction in backup storage requirements, and a potential reduction in backup, and restore, times.

Regarding compressing the backup, RMAN Basic compression delivers a very good compression ratio, but can
sometimes be CPU intensive, and CPU availability can be a limiting factor in the performance of backups and
restores.

There are three additional levels of RMAN backup compression provided by Advanced Compression: LOW,
MEDIUM, and HIGH. The amount of storage savings increases from LOW to HIGH, while potentially
consuming more CPU resources. LOW / MEDIUM / HIGH compression is designed to deliver varying levels of
compression, while typically using less CPU than RMAN Basic Compression.

The three levels can be categorized as such:

e HIGH - Best suited for backups over slower networks where the limiting factor is network
speed

¢ MEDIUM - Recommended for most environments. Good combination of compression ratios

and speed

e LOW -Least impact on backup throughput and suited for environments where CPU resources
are the limiting factor

If you are IO-limited, but have idle CPU, then HIGH could work best, as it uses more CPU, but saves the most
space and thus gives the biggest decrease in the number of IOs required to write the backup files.

On the other hand, if you are CPU-limited, then LOW or MEDIUM probably makes more sense. Less CPU is
used, and about 80% of the space savings will typically be realized (compared to the Basic compression included
with RMAN).

Advanced LOB Compression (SecureFiles LOBs)

It is usually possible to improve a table’s compression ratio by storing LOBs out-of-line in SecureFiles LOB
segments, with Advanced LOB Compression, instead of storing LOBs in-line.

When LOBS are stored in-line, Advanced Row Compression will try to compress the inline LOBs. Advanced
Row Compression depends upon deduplication to reduce the size of a block. With unstructured data stored in-
line, it is unlikely that a duplicate of that unstructured data will be in the same block, and this means that the
unstructured data in the block, which can often be quite large, will not be compressed. This can lead to lower-
than-expected overall compression ratios for the table.

Advanced LOB Compression, however, uses a different compression algorithm and can often compress
unstructured data stored in SecureFiles LOB segments that cannot be compressed when stored in-line.

There are three levels of Advanced LOB Compression: LOW, MEDIUM, and HIGH:
e By default, Advanced LOB Compression uses the MEDIUM level, which typically provides

good compression with a modest CPU overhead

8 Advanced Compression POC Overview Tech Brief/ Version 23ai

Copyright ©2025, Oracle and/or its affiliates / Public

|

ORACLE

e Advanced LOB Compression LOW is optimized for high performance. Advanced LOB
Compression LOW maintains about 80% of the compression achieved through MEDIUM,
while utilizing less CPU

e Advanced LOB Compression HIGH achieves the highest storage savings but incurs the most
CPU overhead

If the database detects if SecureFiles data is compressible and will compress using industry standard
compression algorithms. If the compression does not yield any savings or if the data is already compressed,
SecureFiles will turn off compression for such LOBs.

Advanced LOB Deduplication (SecureFiles LOBs)

Advanced LOB Deduplication enables Oracle Database to automatically detect duplicate LOB data, within a
LOB column or partition, and conserve space by storing only one copy of the data. Note that Advanced LOB
Deduplication is a feature of Advanced Compression.

You can estimate the space, that you can save, before enabling Advanced LOB Deduplication. This allows you
to make an informed decision whether or not to enable LOB deduplication as well as decide whether you want
to deduplicate the resultant SecureFiles LOB, before migrating BasicFiles LOBs to SecureFiles LOBs.

The GET_LOB_DEDUPLICATION_RATIO function estimates the storage space that you can save by enabling the
deduplication feature, for existing SecureFiles LOBs and returns the deduplication ratio.

Syntax

DBMS_LOB.GET_LOB_DEDUPLICATION_RATIO (
tablespacename IN VARCHAR2,

tabowner IN VARCHAR2,
loccolumnname IN VARCHAR2,
partname IN VARCHAR2,
dedup_ratio IN NUMBER,
subset_numrows IN NUMBER DEFAULT
DEDUP_RATIO_LOB_MAXROWS
)

The deduplication ratio (dedup_ratio) is estimated for the number of rows in the LOB column that you specify , the
syntax above uses DEDUP_RATIO_LOB_MAXROWS to specify all rows be included in the estimate.

The LOB storage savings depends upon the deduplication ratio achieved. For example, say that the
deduplication advisor estimated a deduplication ratio of up to 2.33x, this means that generally, the amount of
space consumed by the LOBs, without deduplication, will be up to 2.33 times larger.

Considerations Before Testing Starts

As part of the proof-of-concept pre-test planning, make note and act (as needed) on the following compression
suggested best practices:

= Iffeasible, upgrade to the latest release (or apply any critical patches to the current release)

* Define Success Criteria for the proof-of-concept (data, index and backup storage reduction,
query/insert/update performance, bulk load operations performance, application performance

* Ensure compressed columns have no “long” data types — this data type isn’t supported by
Advanced Row compression

9 Advanced Compression POC Overview Tech Brief/ Version 23ai

Copyright ©2025, Oracle and/or its affiliates / Public

|

ORACLE

* Ensure compressed tables/partitions have less than 255 columns (this limit was removed in
Oracle Database 12¢ and above). See Oracle MOS Note 1612095.1 for additional information

* Although CPU overhead is typically minimal, implementing table, index and LOB
compression is best suited on systems with available CPU cycles, as compression will have
additional, although minor, overhead for some DML operations

* The best test environment for each compression capability is where you can most closely
duplicate the production environment. This will provide the most realistic (pre- and post-
compression) performance and functionality comparisons

* The general recommendation is to compress all the application related tables in the database
with one exception: if the table is used as a queue. That is, if the rows are inserted into the
table, then later most or all the rows are deleted, then more rows are inserted and then again
deleted. This type of activity is not a good use case for compression due to the overhead to
constantly compress rows that are transient in nature

» Advanced Compression works well with Oracle’s tablespace-level Transparent Data
Encryption (TDE). With tablespace-level encryption, compression is done before encryption,
so the compression ratio is not affected by the encryption. With TDE column-level
encryption, the encryption is done before compression, which will negatively impact the
compression ratio

About Compression Overhead

Before performing a proof-of-concept users sometime speculate that the overhead of decompression could
influence query performance. However, in practice, this is typically unlikely.

Advanced Row and Advanced Index compressed blocks are never "decompressed” at the block level, and for
most queries, individual rows are not decompressed either. Most queries can operate directly on the compressed
format in the database blocks in memory and most query predicates operate directly on compressed data
formats, and only values required for the later stages of the query are decompressed.

There is typically not an increase in overhead for queries on compressed data/indexes, and there is usually a
decrease because of the reduction in IO to query a given amount of user data. If the data is compressed at a 3x
ratio, for example, then it takes only 1/3 the amount of IO to read that data from disk and into the buffer cache
when using compression. While it is true that there can be a few "extra" instruction cycles to dereference
pointers inside compressed data blocks to extract column values, this is usually more than offset by the
reduction in IO.

But to be truly sure of any potential overhead associated with compression, it is recommended to test using
your organizations data, applications and test environment that simulates how compression will be used in

production.
Improving Compression Ratios

The compression ratio of a particular table/partition is primarily related to the amount of duplication that exists,
at the block level. The higher the amount of duplication then the higher the compression ratio, and the more
unique the data, then the lower the compression ratio.

If the data is unique, then it is very possible that the table/partition will not compress well or at all.

There are some things you can try to possibly increase the compression ratio for a particular table. As usual, you
should test any changes, using your data, applications, and systems to determine the impact any such changes
will have in your environment.

10 Advanced Compression POC Overview Tech Brief/ Version 23ai

Copyright ©2025, Oracle and/or its affiliates / Public

|

ORACLE

Sorting Data

It may be possible to improve a table’s compression ratio by presorting the data when it is
loaded. You will have to decide which column(s) to sort on based on the cardinality of the
data in each column. If you can, sort on a column that has a small number of distinct
values, which could produce better compression ratios.

However, presorting will require additional preparation of the data before loading. You
will need to weigh that additional time versus any compression ratio gain. Test with your
own data to determine if data sorting will have an impact on your compression ratio.

Larger Block Size

It is possible a larger block size will have a better compression ratio if the larger block has
more duplication on the block. However, larger blocks do not always ensure higher
compression ratios. Test with your own data to determine if larger block sizes will have an
impact on your compression ratio.

What Does a Typical Proof-of-Concept Look Like?

As indicated earlier, it is important to note that the best test environment for each compression feature is where
you can most closely duplicate the production environment. This will provide the most realistic (pre- and post-
compression) performance and functionality comparisons.

Generally, the Advanced Compression features that are tested during a compression proof-of-concept includes:
e Advanced Row Compression
e Advanced Index Compression
e RMAN Backup Compression
e Advanced LOB Compression
¢ Data Guard Redo Transport Compression

While Advanced Compression does include numerous other features, the above are the features most typically
included in a proof-of-concept.

You may choose to include other Advanced Compression features, or not include some of these features.
In terms of the actual proof-of-concept, customers often indicate the following:

e Before proof-of-concept testing, estimate compression ratios (storage reduction) for structured
data, indexes, and unstructured data. Compression Advisor (see below) can be used to estimate
Advanced Row Compression, Advanced Index Compression and Advanced LOB Compression
ratios

e Use testing to identify performance improvements and any possible performance impact from
compression. Determine this by running your applications, using your data on test platforms
(similar to your production hardware), and profiling the performance before and after
compression. Ideally, the application testing includes application queries, bulk load operations
using both conventional-path and direct-path loads, single row DML (i.e., conventional insert,
update and delete operations) and RMAN backups

e While the general suggestion is to compress all tables, some organizations instead choose only
to compress the largest tables that account for approximately 80%+ of their data storage
requirements

11 Advanced Compression POC Overview Tech Brief/ Version 23ai

Copyright ©2025, Oracle and/or its affiliates / Public

|

ORACLE

e MOS note Doc ID 729551.1 is useful for information about estimating compression savings
when using Data Guard Redo Transport Compression

e Ifavailable, Oracle’s Real Application Testing (RAT) product can be a useful tool for a
compression Proof-of-concept

Get Started with Compression Advisor (with Example)

An easy way to get started, with Advanced Compression, is by using compression advisor. The
“DBMS_COMPRESSION” PL/SQL package (commonly called compression advisor) gathers compression-related
information within a database environment.

This includes estimating the compressibility of both uncompressed partitioned, and non-partitioned tables, and
gathering row-level compression information on previously compressed tables/partitions. Compression advisor
provides organizations with the storage reduction information needed to make compression-related usage
decisions.

Example:

Running advisor, for Advanced Row Compression, against a table called ORDERS in a schema called FOO
which resides in the FOO tablespace.

set serveroutput on

DECLARE

blkcnt_cnt pls_integer;

blkcnt_uncmp pls_integer;

blkcnt_cmp pls_integer;

row_cmp pls_integer;

row_uncmp pls_integer;

cmp_ratio pls_integer;

comptype_str varchar2(100);

BEGIN

DBMS_COMPRESSION.GET_COMPRESSION_RATIO ('FOO', 'FOO', 'ORDERS', '',
DBMS_COMPRESSION.COMP_ADVANCED, blkcnt_cmp, blkcnt_uncmp, row_cmp, row_uncmp, cmp_ratio,
comptype_str);

DBMS_OUTPUT.PUT_LINE('Block count compressed = '|| blkcnt_cmp);
DBMS_OUTPUT.PUT_LINE('Block count uncompressed = '|| blkcnt_uncmp);
DBMS_OUTPUT.PUT_LINE('Row count per block compressed = '|| row_cmp);
DBMS_OUTPUT.PUT_LINE('Row count per block uncompressed = '|| row_uncmp);
DBMS_OUTPUT.PUT_LINE('Compression type = '|| comptype_str);
DBMS_OUTPUT.PUT_LINE('Compression ratio = '|| cmp_ratio);

END;

Block count compressed = 1009

Block count uncompressed = 1672

Row count per block compressed = 117
Row count per block uncompressed = 70
Compression type = "Compress Advanced"
Compression ratio = 2

PL/SQL procedure successfully completed.

The output of running compression advisor is an estimation of the compression ratio for the specific table or
partition that was the target of compression advisor. The output, as shown above, indicates the
“COMPRESSION RATIO” presented as a number such as 2.

12 Advanced Compression POC Overview Tech Brief/ Version 23ai

Copyright ©2025, Oracle and/or its affiliates / Public

|

ORACLE

This number indicates that, for this specific table, the estimated compression ratio is 2x, which represents about
a 50% reduction in the footprint of the table or partition should compression be enabled.

DBMS_COMPRESSION is included with Oracle Database Enterprise Edition.
Appendix A

See below, for a simple example of what a compression proof-of-concept may look like as illustrated in a multi-step
process.

Apply all Relevant Patches (optionally upgrade to latest release — if feasible)
— Upgrade to latest release if applicable
— Apply patches
Define Success Criteria
— Database performance
— Database size
— Backup space reduction
— Backup time/restore time
— Application performance
— Data Guard (if applicable)
— Data Pump Compression (if applicable)
Compression Advisor -- DBMS_COMPRESSION
— Obtain compression ratio estimates for tables, indexes and SecureFiles LOBs.
— Determine the overall list of tables, indexes and SecureFiles LOBS to be compressed
Baseline Before Compression in Test Environment: Production Workload
— Gather database performance data (including bulk load operations, queries, inserts/updates etc....)
— Gather backup/restore times
— Gather Data Guard performance data (if applicable)
— Gather database size for tables/indexes
— Gather backup size
— Gather Data Pump file size
— Gather AWR reports
Implement Compression in Test Environment
— Compress all candidate tables/indexes identified using preferred method (online/offline)
— Perform bulk load operations and compare against baseline
— Run SQL statements (query/insert/update) and compare against baseline
— Perform SQL tuning adjustments for non-performing queries (if any)
— Run production workload and verify performance

13 Advanced Compression POC Overview Tech Brief/ Version 23ai

Copyright ©2025, Oracle and/or its affiliates / Public

R |

- B &

ORACLE

— Gather AWR Reports and compare to baseline
Prepare for Production Cutover
— Lessons Learned
— Document all the benefits and issues/resolutions encountered during Proof-of-concept
— Define cutover plan
More Information

o See the PL/SQL Packages and Types Reféerence for more information, and usage examples, about
the DBMS_SECUREFILES.GET_LOB_DEDUPLICATION_RATIO function, Compression Advisor
(DBMS_COMPRESSION) and Online Redefinition (DBMS_REDEFINITION)

e See the Oracle Database Administrator’s Guide documentation for more information about Oracle
compression.

Connect with us

Call +1.800.0RACLEI1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

B blogs.oracle.com n facebook.com/oracle a twitter.com/oracle

Copyright © 2025, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted
to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular
purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

14 Advanced Compression POC Overview Tech Brief/ Version 23ai

Copyright ©2025, Oracle and/or its affiliates / Public

|

W Y6 (o “¢7 "W

