

Oracle Database 23ai New

Compression and SecureFiles

Storage Features Overview
July 2025, Version 23ai

Copyright © 2025, Oracle and/or its affiliates

Public

2 Oracle Database 23ai New Compression and SecureFiles Storage Features Tech Brief / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

Purpose Statement

This document provides an overview of features and enhancements included in release 23ai. It is intended solely to help

you assess the business benefits of upgrading to 23ai and planning for the implementation and upgrade of the product

features described.

Disclaimer

This document in any form, software, or printed matter, contains proprietary information that is the exclusive property

of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle

software license and service agreement, which has been executed and with which you agree to comply. This document

and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle

without prior written consent of Oracle. This document is not part of your license agreement, nor can it be incorporated

into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation

and upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality,

and should not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any

features or functionality described in this document remains at the sole discretion of Oracle. Due to the nature of the

product architecture, it may not be possible to safely include all features described in this document without risking

significant destabilization of the code.

3 Oracle Database 23ai New Compression and SecureFiles Storage Features Tech Brief / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

Table of Contents

About this Document 4

Overview of Automatic Storage Optimization 4

Overview of Manual and Automatic SecureFiles Shrink 7

Overview of Advanced Index Compression LOW for IOTs 10

More Information 11

4 Oracle Database 23ai New Compression and SecureFiles Storage Features Tech Brief / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

About this Document

This document discusses new Oracle Database 23ai compression related features focused on reducing both data

and index storage requirements, as well as a new feature focused on helping administrators better manage

SecureFiles LOB segment space.

The new features include Automatic Storage Compression, Automatic SecureFiles Shrink and Advanced Index

Compression LOW for IOTs.

Overview of Automatic Storage Optimization

Organizations use Oracle’s Hybrid Columnar Compression (HCC) for space savings and fast analytics

performance. However, the compression and decompression overhead of Hybrid Columnar Compression can

affect direct load performance. To improve direct load performance, Automatic Storage Compression enables

Oracle Database to direct load data into an uncompressed format initially, and then gradually move rows into

Hybrid Columnar Compression format in the background.

When Automatic Storage Compression is enabled, direct loads into a Hybrid Columnar Compression object

would use the uncompressed format to achieve faster loads. The database will then wait until there are no

modifications, to the newly loaded data for the duration of the user specified DML inactivity threshold. At that

point, the data from the uncompressed direct load will be gradually HCC compressed in the background using

AutoTask.

At a high level, the process would appear as follows:

 Uncompressed Data Direct Loaded into HCC Table

 |

 Database Waits Until User Specified “DML Inactivity Threshold” is Met

 |

 When Threshold is Met, Database Automatically Moves and Compresses Data

 |

 When Move Completed, the Table is Fully HCC Compressed

Compare this to the existing manual ILM process:

 Uncompressed Data Direct Loaded into Table

 |

 Table Enabled for HCC Compression

 |

 User Manually Creates ILM Policy to Specify When Table can be HCC Compressed

 |

 Database Rebuilds Entire Segment, to Enable Compression, when ILM Policy Condition Met

 |

 Space Freed by Compression is not Reclaimed Immediately (need new inserts to reuse the space)

Usage Prerequisites

The table must be in a tablespace with these properties:

• In the PDB, set HEAT_MAP=ON

• Table(s) need to be specified HCC and reside on a tablespace that uses SEGMENT SPACE

MANAGEMENT AUTO and AUTOALLOCATE

5 Oracle Database 23ai New Compression and SecureFiles Storage Features Tech Brief / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

Usage Example

• Enable Automatic Storage Compression at the PDB level

exec dbms_ilm_admin.enable_auto_optimize;

• Create a table without HCC compression

For this example, a table named “MYTAB” will be used as an example. The table was

created without any compression.

• Check that the table is not compressed

Confirm that the table is not yet compressed.

select unique dbms_compression.get_compression_type('SCOTT', 'MYTAB',

rowid) from scott.mytab;

DBMS_COMPRESSION.GET_COMPRESSION_TYPE('SCOTT','MYTAB',ROWID)

--

 1

Note: dbms_compression.get_compression_type uses constants that can be used to determine compression type.

“1” indicates that the table is currently not compressed.

See the Oracle PL/SQL Packages and Types Reference documentation for more information.

• ALTER table to add HCC compression and load data using direct path

For this example, HCC Query LOW compression as added to the table and insert /*+ append */

used to perform the direct-path load.

Confirm the uncompressed size of the table before automatic compression begins.

select bytes/1024/1024 MB from dba_segments where owner = 'SCOTT' and

segment_name = 'MYTAB';

MB

5.625

 5.625 indicates the uncompressed table size (MB).

• Monitor the incremental progress of the automatic compression by checking the “Auto compression data

moved” system statistic, which increases over time as data is moved and compressed

The one-hour default inactivity interval will allow the segment size to be observed before compression

starts.

select name, value from v$sysstat where name like 'Auto compression data%';

NAME VALUE

-- --------

Auto compression data movement success 0

Auto compression data movement failure 0

Auto compression data moved 0

Note: v$sysstat will show the sum of values, across all tables that are using automatic compression. If you are

6 Oracle Database 23ai New Compression and SecureFiles Storage Features Tech Brief / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

compressing more than one table, then the value of “Auto compression data moved” would include the data

moved for those tables as well. Also, due to rounding up, the value may not exactly match the actual size of

uncompressed data over time

• As the data movement and compression begins, the value of "Auto compression data moved" increases

select name, value from v$sysstat where name like 'Auto compression data%';

NAME VALUE

--- --------

Auto compression data movement success 1

Auto compression data movement failure 0

Auto compression data moved 6

For this example, the value (MB) of “Auto compression data moved” indicates “6”, meaning that approximately

6MB of uncompressed data was moved to compression. Note that when automatic compression started, the

uncompressed size of the data was 5.625MB.

As this example demonstrates, the segment size before compression, and the amount of data moved during

compression, may not be an exact match. As mentioned earlier, v$sysstat shows the sum of values across all

tables using automatic compression, if you are loading more than one table, then the value of “Auto

compression data moved” would include the data for those tables as well.

Also, due to rounding up, the value of “Auto compression data moved” may not exactly match the actual size of

uncompressed data over time. Although the value is expected to be similar to the uncompressed size of the data.

• Check the compression level of the table and the compressed size

select unique dbms_compression.get_compression_type('SCOTT', 'MYTAB',
rowid) from scott.mytab;

DBMS_COMPRESSION.GET_COMPRESSION_TYPE('SCOTT','MYTAB',ROWID)

--

 8

Note: dbms_compression.get_compression_type uses constants that can be used to determine compression type.

“8” indicates that the table is currently compressed using HCC Query Low compression. See the Oracle PL/SQL

Packages and Types Reference for more information.

select bytes/1024/1024 MB from dba_segments where owner = 'SCOTT' and

segment_name = 'MYTAB';

MB

.3125

.3125MB indicates the size of that table after automatic compression to HCC Query Low.

Notes about the output of v$sysstat.

– “Auto compression data movement failure” is the number of unsuccessful data movement

(compression) attempts. This value is incremented if 1) the database ran into any errors

during compression, or 2) the database ran out of time in the current background task to

process further – in which case compression will resume in the next background task.

7 Oracle Database 23ai New Compression and SecureFiles Storage Features Tech Brief / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

– “Auto compression data movement success” is the number of successful data movement

attempts. Auto Compression may break up the data movement work for a single direct load

into multiple batches, so this may not exactly match the number of segments or direct loads.

For more information about the usage of Automatic Storage Compression, please see the “More

Information” section at the end of this document.

Overview of Manual and Automatic SecureFiles Shrink

SecureFiles is the default storage mechanism for LOBs with Oracle Database. Oracle strongly recommends

SecureFiles for storing and managing LOBs.

The Oracle Database SecureFiles Shrink feature provides manual, and automatic methods to free the unused

space in SecureFiles LOB segments and release the space back to the containing tablespace.

This document provides an overview of both the Manual, and Automatic SecureFiles Shrink features.

Manual SecureFiles Shrink

Use the ALTER TABLE… SHRINK SPACE statement to manually shrink a SecureFiles LOB segment. You can

use the Segment Advisor, or a PL/SQL procedure such as DBMS_SPACE.SPACE_USAGE to return information

about SecureFiles space usage before deciding on the SecureFiles LOB segments to shrink.

The following points are important regarding the manual shrink method:

- The manual SecureFiles shrink operation is an online DDL with part of the operations

being offline, where offline means concurrent DML are blocked until the shrink

activity on the critical section ends. The concurrent DML statements do not fail with

ORA-00054, but are blocked

- The manual SecureFiles shrink operation disregards any flavor of undo retention and

treats it as if the retention is equal to none. Users cannot expect the LOB retention

feature to provide the usual guarantees after invoking the shrink operation. A user

may see the ORA-1555 snapshot too old message in queries. Run the shrink operation

with caution if this is a concern

Manual Shrink can be Invoked Using these Methods:

- This command targets the specified LOB column and all its partitions:

ALTER TABLE <table_name> MODIFY LOB <lob_column> SHRINK SPACE

- The following command cascades the shrink operation for all LOB columns

and its partitions in the specified table:

ALTER TABLE <table_name> SHRINK SPACE CASCADE

Use manual shrink on SecureFiles LOB segments from Oracle Database 21c and onward.

Automatic SecureFiles Shrink

It may not be feasible for administrators to spend their time checking manually each SecureFiles LOB segment

to shrink. Automatic SecureFiles Shrink uses a framework that enables automatic selection of SecureFiles LOB

segments to shrink based on a set of criteria (see selection criteria below) and it runs Automatic SecureFiles

Shrink in the background.

8 Oracle Database 23ai New Compression and SecureFiles Storage Features Tech Brief / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

Automatic SecureFiles Shrink is designed to minimize the functional and performance impact on concurrent

workloads. While shrink runs automatically on a SecureFiles LOB segment, all Data Manipulation Language

(DML) statements and Data Definition Language (DDL) statements that involve the segment will succeed. Space

is gradually freed in the SecureFiles LOB Segment, and the performance impact is minimal.

Automatic SecureFiles Shrink does not have any effect on the BasicFiles LOBs and in-lined LOBs. Automatic

SecureFiles Shrink ensures that SecureFiles LOB segments do not consume excessive free space and alleviates

administrators from the burden of manually running SecureFiles Shrink.

Automatic SecureFiles Shrink is not enabled by default.

• In on-premises environments, run the following command to enable the Automatic

SecureFiles Shrink feature:

 exec DBMS_SPACE.SECUREFILE_SHRINK_ENABLED():

• In Autonomous Cloud environments, contact your system administrator to enable

Automatic SecureFiles Shrink

SecureFiles LOB Segments Selection Criteria for Automatic Shrink

The Automatic SecureFiles Shrink task excludes the following SecureFiles LOB segments when choosing the

SecureFiles LOB segments to shrink:

• The SecureFiles LOB segment is not an idle segment as per LOB Segment Idle Time

Limit

• The SecureFiles LOB segment does not contain extra free space greater than the pre-

allocation threshold

• The SecureFiles LOB segment has RETENTION MAX, which means the segment

keeps as many unexpired blocks as possible

• The SecureFiles LOB segment is currently being shrunk

• The SecureFiles LOB segment does not have enough expired free space that is no

longer needed for lob retention requirement. Space that is still needed for lob

retention is treated as used space

• The SecureFiles LOB segment has failed a previous shrink task. Previous shrink calls

have failed to free space from the SecureFiles LOB segment. Automatic SecureFiles

Shrink identifies the LOB segments that it failed to shrink previously and avoids such

segments

Automatic SecureFiles Shrink Task

Automatic SecureFiles Shrink performs a series of steps to complete the shrink of SecureFiles LOB segments.

When enabled, a shrink task is performed as one instance of the background action performed on AutoTask.

The task runs every 30 minutes and performs the following steps:

1. A shrink task has 60 minutes at the start of the task. As the task progresses, it tracks

both the time spent so far and the average duration of a shrink call. The latter is used

to predict how long the next shrink call would take. If the time left is not enough for

another call, the shrink task exits. If a shrink call goes over the 60-minute mark, it is

terminated

9 Oracle Database 23ai New Compression and SecureFiles Storage Features Tech Brief / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

2. Automatic SecureFiles Shrink fetches the next batch of SecureFiles LOB segments

from internal catalog tables (which is ordered by objd). The last objd in the previous

shrink task is used as the starting point for the next shrink task

3. Automatic SecureFiles Shrink applies the criteria filters from the Selection Criteria for

SecureFiles LOB segment to remove the segments that do not qualify for the shrink task

4. Once the qualified segment is found, the shrink task can start work on the segment

5. Before starting the shrink, the shrink target is computed. The shrink target is based on the

Pre-Allocation Threshold and the Automatic SecureFiles Shrink Trickle Threshold

6. Automatic SecureFiles Shrink runs the shrink command. The ALTER TABLE ... SHRINK

SPACE command is executed using the OCI interface

7. Automatic SecureFiles Shrink updates the timestamp for the next shrink. This timestamp

indicates the earliest time when Automatic SecureFiles Shrink can select this SecureFiles LOB

segment again. If space was freed successfully, the timestamp uses the current time.

Otherwise, the shrink is assigned a time in the future. If shrink is not successful, a penalty

time is assessed to avoid Automatic SecureFiles Shrink from selecting the same LOB segment

in future shrink tasks

Key Automatic SecureFiles Shrink Capabilities

• Integrates with Pre-Allocation:

Automatic SecureFiles Shrink integrates with pre-allocation seamlessly without

affecting performance. Automatic SecureFiles Shrink avoids the SecureFiles LOB

segments that are recently pre-allocated. Segment pre-allocation is performed in the

background for segments that have high demand for free space

• Works with DDL and DML:

Automatic SecureFiles Shrink targets only idle segments and skips active SecureFiles

LOB segments. User driven DDL and DML statements do not fail and face minimal

performance impact when Automatic SecureFiles Shrink works in the background. If

Automatic SecureFiles Shrink for a SecureFiles LOB segment comes across locked

rows, it skips the locked rows because locked rows are indicative of DML activity or

waiting on locked rows may cause deadlocks with user transactions.

• Targets Idle SecureFiles LOB Segments:

To avoid unnecessary block accesses, Automatic SecureFiles Shrink filters SecureFiles

LOB segments based on information available in System Global Area (SGA). Automatic

SecureFiles Shrink selects only idle SecureFiles LOB segments and skips active

SecureFiles LOB segments to minimize performance impact on active SecureFiles LOB

segments

• Covers All SecureFiles LOB Segments:

Automatic SecureFiles Shrink task covers all SecureFiles LOB segments in a PDB over

several intervals and this includes user created SecureFiles LOB segments and the

SecureFiles LOB segments that are created using features, such as JSON and DBFS

10 Oracle Database 23ai New Compression and SecureFiles Storage Features Tech Brief / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

• Performs Shrinks in Iterations:

Automatic SecureFiles Shrink does not free all the free space in the selected

SecureFiles LOB segments at once. Instead, the Automatic SecureFiles shrink task frees

a modest amount of space at every shrink call (iteration). The trickle threshold limit

defines the amount of space to shrink in every iteration. Over time, the amount of free

space in idle SecureFiles LOB segments approaches the minimum that is specified for

pre-allocation

• Executes in the Background:

All steps involved in Automatic SecureFiles Shrink, including the selection of

SecureFiles LOB segments to shrink, run in the background. After Automatic

SecureFiles Shrink is enabled, it comes into effect with the start of a database instance.

No directive regarding how Automatic SecureFiles Shrink should operate is required

• Honors Undo Retention:

Automatic SecureFiles Shrink respects the undo retention period. It does not allow a

query to fail within the undo retention period because an affected SecureFiles LOB

segment has been freed, relocated, or reused as a part of an Automatic SecureFiles

Shrink task. Unexpired blocks are freed only after the undo retention time

Automatic SecureFiles Shrink simplifies administrator duties. Automatic SecureFiles Shrink automatically

selects SecureFiles LOB segments, based on a set of criteria, and executes the shrink operation in the

background for the selected SecureFiles LOB segments. With Automatic SecureFiles Shrink, the shrink

operation happens transparently in small and gradual steps over time while allowing DDL and DML statements

to execute concurrently.

Overview of Advanced Index Compression LOW for IOTs

Advanced Index Compression, a feature of Advanced Compression, simplifies index compression. Advanced

Index Compression enables the highest levels of data compression and provides enterprises with storage savings

and query performance improvements due to reduced I/O. Advanced Index Compression is an enabling

technology for multiple compression levels, LOW and HIGH.

This discussion will focus on the LOW level of index compression.

Advanced Index Compression LOW

Advanced Index Compression LOW computes the prefix column count for compressed indexes. Rather than

using a static prefix count for all index leaf blocks, it aims to compute an optimal prefix count for every index

leaf block.

The correct and most optimal numbers of prefix columns are calculated automatically on a block-by-block basis

and thus produce the best compression ratio possible. It is possible to have different index leaf blocks

compressed with different prefix column counts or not be compressed at all if there are no repeating prefixes.

Advanced Index Compression LOW for Index-Organized Tables (IOTs).

An index-organized table is a table stored in a variation of a B-tree index structure. In contrast, a heap-

organized table inserts rows where they fit.

In an index-organized table, rows are stored in an index defined on the primary key for the table. Each index

entry in the B-tree also stores the non-key column values. Thus, the index is the data, and the data is the index.

Applications manipulate index-organized tables just like heap-organized tables, using SQL statements.

11 Oracle Database 23ai New Compression and SecureFiles Storage Features Tech Brief / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

IOTs are popular because they provide fast random access by primary key without duplicating primary key

columns in two structures – a heap table and an index. Index-Organized Tables can now be compressed with

Advanced Index Compression LOW.

Advanced Index Compression LOW can be enabled easily by specifying the COMPRESS option for indexes.

Usage example:

create table tiot (c1 number, c2 number, c3 number, c4 number, primary key (c1,

c2)) organization index compress advanced low;

In earlier releases, IOTs only supported Oracle’s Prefix Key Compression for index compression. Usage of Prefix

Compression required user analysis and had the possibility of negative compression (where the overhead of

compression outweighed the compression benefits).

Prefix Index Compression is included with Oracle Database Enterprise Edition.

This new feature extends Advanced Index Compression LOW to IOTs, allowing users to enable compression for

all IOTs without the possibility of negative compression and without any user analysis required.

So that does this mean for your organization?

Average IOT storage reduction can range from up to 2x to 5x. Using 2x as an example, this means that the

amount of space consumed by uncompressed data will be two times larger than that of the compressed data. By

reducing their IOT storage requirements, IT managers can reduce, and sometimes eliminate their need to

purchase new storage.

The cost of decompressing a block compressed with Advanced Index Compression LOW is compensated by the

fact that in most scenarios, the database would be scanning a smaller number of blocks. So, in general, IOT

compression typically won’t compromise query performance (no significant degradation is typical).

See how well your IOTs will compress with the free Compression Advisor

The “DBMS_COMPRESSION” PL/SQL package (commonly called compression advisor) is included with Oracle

Database Enterprise Edition and gathers compression-related information within a database environment.

The output of running compression advisor is an estimation of the compression ratio for the specific table or

index that was the target of compression advisor. Compression advisor provides organizations with the storage

reduction information needed to make compression-related usage decisions.

For more information about the usage of Advanced Index Compression LOW for IOTs, and Oracle Compression

Advisor, please see the “More Information” section below.

More Information

• See the Oracle VLDB and Partitioning Guide documentation for more information, and usage

examples, for Automatic Storage Compression

• See the Oracle SecureFiles and Large Objects Developer’s Guide for more information, and usage

examples, for SecureFiles Shrink

• See the Oracle Database Concepts documentation for more information, and usage examples, for

Advanced Index Compression LOW for IOTs

• See the Oracle PL/SQL Packages and Types Reference for more information about Compression

Advisor (DBMS_COMPRESSION)

12 Oracle Database 23ai New Compression and SecureFiles Storage Features Tech Brief / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2025, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted

to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular

purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be

reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

