

Usage Aware Information

Lifecycle Management

Overview
July 2025, Version 23ai

Copyright © 2025, Oracle and/or its affiliates

Public

2 Usage Aware Information Lifecycle Management / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

Purpose Statement

This document provides an overview of features and enhancements included in release 23ai. It is intended solely to help

you assess the business benefits of upgrading to 23ai and planning for the implementation and upgrade of the product

features described.

Disclaimer

This document in any form, software, or printed matter, contains proprietary information that is the exclusive property

of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle

software license and service agreement, which has been executed and with which you agree to comply. This document

and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle

without prior written consent of Oracle. This document is not part of your license agreement, nor can it be incorporated

into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation

and upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality,

and should not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any

features or functionality described in this document remains at the sole discretion of Oracle. Due to the nature of the

product architecture, it may not be possible to safely include all features described in this document without risking

significant destabilization of the code.

3 Usage Aware Information Lifecycle Management / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

Table of Contents

The Solution: Information Lifecycle Management 4

Automating Information Lifecycle Management 5

Implementing Automatic Information Lifecycle Management 6

Information Lifecycle Management Usage Example 7

Additional Information Lifecycle Management Features 11

Conclusion 11

More Information 12

4 Usage Aware Information Lifecycle Management / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

Exponential increases in data volumes are putting enterprise IT infrastructures under severe pressure – from a

cost, performance, scalability, and manageability perspective. It has become imperative to employ more

efficient ways of storing, and managing, data to meet growing demands on IT systems. Dramatic increases in

storage volumes are evident in all types of applications, and enterprise applications are no exception.

Although most organizations have long regarded their data as one of their most valuable corporate assets, only

recently has the amount of data under management become a major issue. Originally, data helped achieve

operational goals to run the business, but as technology capabilities have grown, ever-larger databases have

become feasible for both transactional (OLTP) and analytical (Data Warehouse) applications.

Regulatory requirements are also changing data retention, as many organizations are now required to retain,

and control, much more information for much longer periods. These requirements often extend beyond

structured data - typically stored in relational databases such as Oracle Database – to semi-structured and

unstructured data such as medical images, videos, photos, contracts, documents, etc. The result is an explosion

in the amount of data (and indexes) that organizations are required to obtain, organize, manage, and store

securely (and safely), while still providing easy, scalable, and high-performance access.

Consequently, organizations are trying to store fast growing quantities of data for the lowest possible cost while

meeting increasingly stringent regulatory requirements for data retention and protection.

The Solution: Information Lifecycle Management

Information Lifecycle Management (ILM) is the practice of applying policies for the effective management

(including storage) of information throughout its useful life.

Information Lifecycle Management for Oracle Database includes every phase of information from its beginning

to its end. This includes the policies, processes practices and tools used to align the business value of

information with the most appropriate and cost-effective IT infrastructure -- from the time information is

created, or acquired, through its final disposition.

There are FIVE STEPS to implement an effective Information Lifecycle Management strategy:

1. Define the Data Classes:

For the primary databases that drive your business, identify the types of data in each database and where it is

stored, and then determine:

• Which data is important, where it is, and what must be retained

• How this data flows within the organization

• What happens to this data over time and when is it no longer actively needed

• The degree of data availability, and protection, that is needed

• Data retention for legal and business requirements

2. Create Logical Storage Tiers:

For the data classes that represent the different types of storage tiers available in your environment.

3. Define a Lifecycle:

A lifecycle definition describes how data migrates across logical storage tiers during its lifetime. A lifecycle

definition comprises one or more lifecycle stages that select a logical storage tier, data attributes such as

compression and read-only, and a duration for data residing on that lifecycle stage.

To summarize, a lifecycle defines WHERE to store data, HOW to store data and HOW LONG data should be

retained.

5 Usage Aware Information Lifecycle Management / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

4. Assign a Lifecycle to Database Tables/Partitions

Ideally, each table and/or partition would contain data that is associated with a specific lifecycle point of that

data. Meaning, the data in a specific table, or partition, would all be from the active portion (actively being

modified) of its lifecycle, or perhaps the data is less active (query mostly/query only), or the data is cold

(historic/archive). In practice, this may be more easily achieved through the use of partitioning.

5. Define and Enforce Compliance Policies

As data moves through its lifecycle over time, where that data is stored, as well as to what level that data is

compressed, if at all, should be defined and enforced as transparently as possible to avoid any additional burden

on administrators.

Automating Information Lifecycle Management

Previously, when implementing an Information Lifecycle Management strategy with Oracle Database,

organizations typically used Advanced Row Compression and Partitioning to manually create, and manually

enforce, a compression and storage tiering solution. This solution required organizations to have sharp insight

into data access, and usage patterns across their applications.

Based upon this insight, DBAs, along with their storage counterparts, would manually compress and/or move

data based upon their best estimations regarding actual usage. Ideally trying to ensure that the most frequently

accessed data remained on the highest performance storage.

The Information Lifecycle Management features of Oracle Database can automate this previously manual

operation using Heat Map, and Automatic Data Optimization (Automatic Data Optimization is a feature of

Advanced Compression).

Heat Map

Heat Map automatically tracks usage information at the row and segment levels. Data modification times are

tracked at the row level and aggregated to the block level, and modification times, full table scan times, and

index lookup times are tracked at the segment level. Heat map enables a detailed view of how data is accessed,

and how access patterns change over time.

Programmatic access to Heat map data is available through a set of PL/SQL table functions, as well as through

data dictionary views. In addition, Oracle Enterprise Manager provides graphical representations of Heat map

data.

Heat map is included with Oracle Database Enterprise Edition release 19c and above.

Automatic Data Optimization

Automatic Data Optimization (ADO) allows organizations to create compression tiering and/or storage tiering

ADO policies. Oracle Database evaluates these ADO policies during the database maintenance window, and

uses the information collected by Heat map to determine which operations to automatically execute.

ADO policies specify what conditions (of data/index access) will initiate an ADO operation – such as no access,

or no modification, or creation time – and when the policy will take effect – for example, after “n” days or

months or years. Custom conditions can be created by the DBA, allowing other factors to be used to determine

when to move or compress data.

ADO compression tiering policies can be set at the following levels:

SEGMENT

This type of policy instructs the database to compress table segments when the condition specified

in the AFTER clause is met or when the PL/SQL function specified in the ON clause returns TRUE

6 Usage Aware Information Lifecycle Management / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

GROUP

This type of policy instructs the database to compress the table and its dependent objects, such as

indexes and SecureFiles LOBs, when the condition specified in the AFTER clause is met or when

the PL/SQL function specified in the ON clause returns TRUE

ROW

This type of policy instructs the database to compress database blocks in which all the rows have

not been modified for a specified period of time

All ADO operations execute automatically, and in the background, no user intervention required.

Policies can also be evaluated and executed anytime, by a DBA, manually or via a script.

Implementing Automatic Information Lifecycle Management

At the core of an Oracle Database Information Lifecycle Management solution is the ability to define multiple

data classes and tiers of storage, and then assign different segments of data/indexes to different tiers based on

the desired cost, performance, and security for each.

This is enabled using Oracle Partitioning, Advanced Row Compression, Advanced Index Compression and

Hybrid Columnar Compression, which are briefly described below.

Partitioning

At the most basic level, organizations can implement an Information Lifecycle Management strategy by

partitioning data based on the age of the data, and then moving historical partitions to low-cost storage, while

keeping partitions that are more active on high performance storage. Data Partitioning allows a table, index, or

index-organized table (IOT) to be subdivided into pieces. Each piece of a database object is a partition. Each

partition has its own name and may optionally have its own storage characteristics (including compression).

From the perspective of a database administrator, a partitioned object has multiple pieces, managed either

collectively or individually. This gives the administrator considerable flexibility in managing the partitioned

object. However, from the perspective of the application, a partitioned table is identical to a non-partitioned

table; no modifications to application queries are necessary when accessing a partitioned table.

It is not unusual for partitioning to improve the performance of queries or maintenance operations by an order

of magnitude. Moreover, partitioning can greatly reduce the total cost of data ownership, enabling a “tiered

archiving” approach of keeping older but still relevant information online on lower cost storage devices.

Advanced Row Compression

Advanced Row Compression, a feature of Advanced Compression, uses a compression algorithm specifically

designed to work with database tables in all types of applications. The algorithm works by eliminating duplicate

values within a database block, even across multiple columns. The compression ratio achieved with a given data

set depends on the nature of the data being compressed.

In general, organizations can expect to reduce their storage space consumption up to 2x to 4x by using

Advanced Row Compression. That is, the amount of space consumed by compressed data will be two to four

times smaller than that of the same data without compression.

Advanced Index Compression

Indexes are used extensively in OLTP and mixed workload environments, as they are capable of efficiently

supporting a wide variety of access paths to the data stored in relational tables. It is very common to find many

indexes being created on a single table to support a multitude of access paths for applications. This can cause

7 Usage Aware Information Lifecycle Management / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

indexes to contribute a greater share to the overall storage of a database when compared to the size of the base

tables alone.

Advanced Index Compression, a feature of Advanced Compression, enables the highest levels of data

compression and provides enterprises with tremendous cost-savings, and performance improvements, due to

reduced IO. In general, organizations can expect to reduce their index storage space consumption up to 2x to 5x

by using Advanced Index Compression, depending on which index compression level (LOW/HIGH) is

implemented.

Hybrid Columnar Compression

Hybrid Columnar Compression (HCC) enables higher levels of compression and provides enterprises with

tremendous cost savings. Average compression ratios can range from up to 6x to 15x depending on which

Hybrid Columnar Compression level is implemented – real world customer benchmarks have resulted in

compression ratios of up to 50x and more.

Oracle’s Hybrid Columnar Compression technology utilizes a combination of both row and columnar methods

for storing data. While HCC compressed data can be modified using conventional Data Manipulation Language

(DML) operations, such as INSERT and UPDATE – HCC is best suited for applications with no, or very limited

DML update operations.

The SQL INSERT statement, without the APPEND hint, can use HCC (without degrading the compression

level), and array inserts from programmatic interfaces such as PL/SQL and the Oracle Call Interface (OCI) can

use HCC.

Information Lifecycle Management Usage Example

Steps 1 to 3: Define Data Classes, Logical Storage Tiers, and Information Lifecycle

Oracle Features: Data Partitioning, Advanced Compression and/or Hybrid Columnar Compression

• Define the Data Classes

This step involves looking at all the data in your organization. This analysis requires organizations to

understand which objects are associated with which applications, where those objects are located (on

what class of storage), whether the objects have been compressed, and the granularity of the object

(table vs. partition)

• Create Logical Storage Tiers

This step identifies and creates logical storage tiers. Utilizing higher cost high performance storage

and lower cost high-capacity storage

• Define a Lifecycle

The lifecycle definition describes how data migrates across logical storage tiers during its lifetime. A

lifecycle definition includes one or more lifecycle stages that select a logical storage tier, data attributes

such as compression and/or read only, and a retention period for data residing on that lifecycle stage

The lifecycle brings together the information/activities in STEPS 1 and 2 to allow DBAs to plan WHERE to

store data (the logical storage tiers), HOW to store data (the data granularity and whether to compress the data)

and HOW LONG data should be retained (which also helps determine how to compress the data).

Utilizing the planning from STEP 3, the most active data can be located on a high-performance tier, and the less

active / historical data on lower-cost tiers (and begins to associate the appropriate compression levels to the

various storage tiers). Using Oracle Data Partitioning, the most active data partitions can be placed on faster,

higher performance storage, while less active and historical data can be placed on lower cost storage.

8 Usage Aware Information Lifecycle Management / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

Data/index compression and index optimization can also be applied as desired on a partition-by-partition basis.

With this combination of features, the organization is meeting all its performance, reliability, and security

requirements, but at a significantly lower cost than in a configuration where all data is located on one tier of

storage (without usage-aware compression).

With OLTP applications, organizations can use Advanced Row Compression for the most active

tables/partitions, to ensure that newly inserted, or updated data, will be compressed as DML operations are

performed against the active tables/partitions. For cold or historic data (tables/partitions with no or limited

DML update activity) within the OLTP application, organizations can use either Query Level or Archive Level

Hybrid Columnar Compression (assuming they are using storage that supports HCC).

Reducing the space requirement for indexes, without sacrificing performance, requires Information Lifecycle

Management actions like Automatic Data Optimization for index segments. Using the index compression and

optimization capabilities, the same ADO infrastructure can also automatically optimize index storage. Like

ADO for table segments, the automatic index compression and optimization capability achieves Information

Lifecycle Management on indexes by enabling organizations to set policies that automatically optimize indexes.

When using ADO for indexes, an OPTIMIZE clause enables ADO to optimize the index whenever the policy

condition is met. The optimization process includes actions such as compressing, merging, or rebuilding

indexes.

• Compresses portions of the key values in an index segment

• Merges the contents of index blocks where possible to free blocks for reuse

• Rebuilds index to improve space usage and access speed

When the optimize clause is specified, Oracle Database automatically determines which action is optimal for

the index and implements that action as part of the optimize clause, you do not have to specify which action is

taken.

Prior to automating Information Lifecycle Management with Oracle Database, organizations implemented both

the storage tiering and compression tiering of their data/indexes manually, based upon their knowledge of the

database. With Oracle Database, storage tiering, compression tiering and storage optimization can be

automated, reducing the requirement for organizations to have deep insights into their data access/usage

patterns.

Steps 4 and 5: Assign a Lifecycle to Tables/Partitions and Define and Enforce Compliance Policies

Oracle Features: Data Partitioning, Advanced Compression and/or Hybrid Columnar Compression, Automatic

Data Optimization and Heat Map

Implementing an automated compression tiering and storage tiering solution, using Automatic Data

Optimization and heat map is straightforward, as the example below will show.

In this example, we have a table named “orders” that was initially created without any compression. We have

turned on heat map and are tracking the usage of this table over time. It is the intention, of our organization, to

wait until most the post-load activities, that are performed initially on the table, complete and then the table

be compressed using Advanced Row Compression (ACTIVE TIER), without moving the table (meaning the

table will be compressed in place).

Once the tables cool down (with no or few DML inserts/updates) and begins to be primarily used for

reporting/analytics (LESS ACTIVE tier), we will then compress the table with HCC QUERY HIGH. When the

table has become colder and is only occasionally queried (COLD/HISTORIC TIER), we will then compress it

even further with HCC ARCHIVE HIGH.

9 Usage Aware Information Lifecycle Management / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

The example uses the ADO condition “no modification”.

Compression Tiering

The ADO policy below enables Advanced Row Compression, and since we specified “row” versus “segment”

level compression, the tables’ blocks will be individually compressed when all the rows on the block meet the

ADO compression policy that is specified (that being AFTER 2 DAYS OF NO MODIFICATION)

ALTER TABLE orders ILM ADD POLICY

ROW STORE COMPRESS ADVANCED ROW

AFTER 2 DAYS OF NO MODIFICATION;

This policy allows the post-load activity to subside on the table before compression is enabled. For

organizations with SLAs around the load times, this allows the table to be created and populated as quickly as

possible, before implementing compression.

Compression can be specified at the “row” level or the “segment” level. Row level allows the table to be

compressed in place, block-by-block, as all the rows on a block meet the ADO policy condition. Tables, and/or

partitions, can also be compressed at the segment level. This means the entire segment is compressed at the

same time (the entire segment is rebuilt).

The next policy, that was specified by the DBA, will be automatically enforced by the database (at the segment

level) AFTER 90 DAYS OF NO MODIFICATION. The policy changes the compression level of the table to a

higher level of compression (HCC QUERY HIGH) when the data is being used primarily for

reporting/analytics.

ALTER TABLE orders ILM ADD POLICY

COLUMN STORE COMPRESS FOR QUERY HIGH SEGMENT

AFTER 90 DAYS OF NO MODIFICATION;

Changing the compression from Advanced Row Compression to Hybrid Columnar Compression (HCC QUERY

HIGH), occurs during a maintenance window after the specified ADO policy criteria has been met.

When this table further “cools down” additional storage and performance gains can also be realized when ADO

automatically compresses the data to the highest level possible (HCC ARCHIVE HIGH) with Oracle Hybrid

Columnar Compression AFTER 180 DAYS OF NO MODIFICATION. In this example, this data is still needed

for query purposes, but is no longer being actively modified (no or few DML inserts/updates) and only

occasionally queried or used for reporting.

This cold/historic data is an ideal candidate for HCC ARCHIVE HIGH compression.

ALTER TABLE orders ILM ADD POLICY

COLUMN STORE COMPRESS FOR ARCHIVE HIGH SEGMENT

AFTER 180 DAYS OF NO MODIFICATION;

With the final ADO compression tiering policy criteria being satisfied, the data is now compressed to the HCC

ARCHIVE HIGH level and could optionally be moved to lower cost storage (must be an Oracle Tablespace).

This allows active data to remain on a higher performance tier (ACTIVE Tier 1) and also enables colder data,

which remains online, to be accessed by applications on a tablespace designated for colder segments (LESS

ACTIVE/COLD/HISTORIC Tier 2).

This example uses the “best practice” approach of compressing using both Advanced Row Compression and

Hybrid Columnar Compression. Advanced Row Compression (as well as ADO) are features of Advanced

Compression.

10 Usage Aware Information Lifecycle Management / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

While HCC does not require Advanced Compression, it does have other requirements1. Please see the Oracle

HCC Tech Brief on the Advanced Compression page on Oracle.com.

Compression tiering best practice does include the use of HCC, but if an organization does not have access to

HCC, then they would use only Advanced Row Compression in their ADO policies.

In the above example ADO has been used to implement compression tiering of the data, but in a similar manner

using the OPTIMIZE clause for indexes provides an opportunity for ADO to optimize an index whenever the

policy condition is met. In this example, the action taken is determined automatically, by the database, AFTER

3 DAYS OF NO MODIFICATION.

Optimize could include compress, merge, or rebuild (as described earlier).

ALTER INDEX orders_idx INFORMATION LIFECYCLE MANAGEMENT ADD POLICY

OPTIMIZE AFTER 3 DAYS OF NO MODIFICATION;

As with ADO for table segments, the heat map framework is used to collect activity statistics on the index as it

goes through its lifecycle stages. When the index ADO policy qualifies for execution, the database automatically

determines which index optimization to implement (merge, compress or rebuild index).

Storage Tiering

ADO-based storage tiering (an ADO Tier To policy) is not based upon the ADO condition clause (i.e., after “x”

days of NO MODIFICATION) as is compression tiering. Storage tiering, instead, is based upon tablespace space

pressure.

The justification for making storage tiering dependent on "space pressure" is exactly as you might imagine. The

belief that organizations will want to keep as much data as possible on their high performance (and most

expensive) storage tier, and not move data to a lower performance storage tier until it is absolutely required.

The exception to the storage pressure requirement are storage tiering policies with the 'READ ONLY' option,

these are triggered by a heat map-based condition clause.

The value for the ADO parameter TBS_PERCENT_USED specifies the percentage of the tablespace quota when

a tablespace is considered full. The value for TBS_PERCENT_FREE specifies the targeted free percentage for

the tablespace. When the percentage of the tablespace quota reaches the value of TBS_PERCENT_USED, ADO

begins to move segments so that percent free of the tablespace quota approaches the value of

TBS_PERCENT_FREE. This action by ADO is a best effort and not a guarantee.

You can set ILM ADO parameters with the CUSTOMIZE_ILM procedure in the DBMS_ILM_ADMIN PL/SQL

package, for example:

BEGIN

DBMS_ILM_ADMIN.CUSTOMIZE_ILM(DBMS_ILM_ADMIN.TBS_PERCENT_USED,85):

DBMS_ILM_ADMIN.CUSTOMIZE_ILM(DBMS_ILM_ADMIN.TBS_PERCENT_FREE,25):

END;

In this example, when a tablespace reaches the fullness threshold (85%) defined by the user, the database will

automatically move the coldest table/partition(s) in the tablespace to the target tablespace until the tablespace

quota has at least 25 percent free.

This only applies to tables and partitions that have a "TIER TO" ADO policy defined (see examples below). This

frees up space on your Tier 1 storage (ACTIVE Tier) for the segments that would truly benefit from the

1 Note that Hybrid Columnar Compression is only available with Oracle Database on Exadata, SuperCluster or with specific Oracle Storage

11 Usage Aware Information Lifecycle Management / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

performance while moving colder segments, that don’t need Tier 1 performance, to a Tier 2 Tablespace (LESS

ACTIVE/COLD Tier).

For example:

ALTER TABLE orders ILM ADD POLICY TIER TO lessactivetbs;

ALTER INDEX orders_idx ILM ADD POLICY TIER TO lessactivetbs;

In this simple TIER TO example, Oracle Database automatically evaluated the ADO policies (and tablespace

fullness) to determine when table and/or index segments are eligible to move to a different tablespace. This

ensures data accessibility and performance, while reducing the storage footprint even further – with no

additional burden placed on database administrators or storage management staff.

When setting storage tiering policies, specify GROUP to create a group-level storage tiering policy. This type of

policy instructs the database to migrate the table, and its dependent objects, such as indexes and SecureFiles

LOBS, to the specified tablespace.

When an ADO policy implements storage tiering the entire segment is moved, and this movement is one

direction. Meaning that ADO storage tiering is meant to move colder segments from high performance storage

to slower, lower cost storage. If an ADO compression-tiering policy, and a storage-tiering policy both qualify

for execution, the database will execute both operations in a single segment reorganization step.

Additional Information Lifecycle Management Features

Oracle Database contains a rich set of features to enhance and optimize an Information Lifecycle Management

solution, including:

SecureFiles

Traditionally, relational data is stored in a database while unstructured data is stored as files in file systems.

Using SecureFiles, you can store relational and file data together in Oracle Database and deliver high

performance while also implementing a unified security model, a unified backup and recovery infrastructure.

Database File System (DBFS)

The Oracle Database File System (DBFS) creates a standard file system interface on top of files and directories

that are stored in database tables. DBFS is like NFS in that it provides a shared network file system that looks

like a local file system. Like NFS, there is a server component and a client component. In DBFS, the server is the

Oracle Database. Files are stored as SecureFiles LOBs in a database table.

In-Database Archiving

In-Database Archiving allows applications to archive rows within tables by marking them as inactive. This

feature can meet compliance requirements for data retention while hiding archived data from current

application usage.

Flashback Time Travel

Flashback Time Travel (formerly Flashback Data Archive) provides the ability to track and store transactional

changes to a table over its lifetime. Flashback Time Travel is useful for compliance with record stage policies

and audit reports.

Conclusion

Information Lifecycle Management enables your organization to understand how data is accessed over time and

manage table, and index, compression-tiering, and storage-tiering accordingly. The Heat Map, and Automatic

Data Optimization features, along with Oracle Database compression and partitioning provide a comprehensive

12 Usage Aware Information Lifecycle Management / Version 23ai

 Copyright © 2025, Oracle and/or its affiliates / Public

and automated Information Lifecycle Management capabilities that minimize costs while maximizing query

performance.

More Information

• See the Oracle Database Administrator’s Guide documentation for more information about Oracle

compression.

• See the Oracle VLDB and Partitioning Guide documentation for more information about Heat Map and

Automatic Data Optimization

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2025, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted

to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular

purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be

reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

