N

ORACLE

Overview of Index Key
Compression and Advanced
Index Compression

July 2025, Version 23ai
Copyright © 2025, Oracle and/or its affiliates
Public



ORACLE

Purpose Statement

This document provides an overview of features and enhancements included in release 23ai. It is intended solely to help
you assess the business benefits of upgrading to 23ai and planning for the implementation and upgrade of the product
features described.

Disclaimer

This document in any form, software, or printed matter, contains proprietary information that is the exclusive property
of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle
software license and service agreement, which has been executed and with which you agree to comply. This document
and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of your license agreement, nor can it be incorporated
into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation
and upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality,
and should not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any
features or functionality described in this document remains at the sole discretion of Oracle. Due to the nature of the
product architecture, it may not be possible to safely include all features described in this document without risking
significant destabilization of the code.

2 Index Compression Overview Tech Brief/ Version 23ai

Copyright © 2025, Oracle and/or its affiliates / Public

|




ORACLE

Table of contents

Introduction

Index Key (Prefix) Compression (included with Enterprise Edition)
Enabling Index Key Compression

Uses of Index Key Compression

Determining the Optimal Prefix Column Length

Index Key Compression Limitations

Compressing Index-Organized Tables (IOTs)

Advanced Index Compression (requires Advanced Compression)
Advanced Index Compression LOW

Enabling Advanced Index Compression LOW

Advanced Index Compression HIGH

Enabling Advanced Index Compression HIGH

Uses of Advanced Index Compression

Advanced Index Compression with Partitioned Indexes
Advanced Index Compression Limitations

Summary

Get Started with Compression Advisor

More Information

3 Index Compression Overview Tech Brief/ Version 23ai

Copyright © 2025, Oracle and/or its affiliates / Public

|

O N NN W W

[ S e S e S e T e T e S Y
W W W W N N NN = O O




ORACLE

Introduction

The amount of data that organizations store is growing exponentially, whereas the budget to manage this data is
not growing nearly at the same rate. This exponential growth of data presents daunting challenges.
Organizations must support fast growing amounts of data, which could be due to the explosion in online
content, government data retention regulations or purely due to growth in business.

However, as databases grow at accelerating rates, it can be difficult to continue to meet performance
requirements while staying within budget. The key is to manage the data growth without hurting the
performance of the system, without incurring additional costs, and with minimal administrative intervention.

Even though the cost of storage has been declining dramatically, the cost of enterprise class storage is not
declining nearly at the same rate. The enormous growth in the data volume makes storage one of the biggest
cost elements of most IT budgets.

Oracle Database has features, and technologies, to help organizations cope with these challenges, including
structured data compression, backup compression, network compression, hybrid columnar data compression,
unstructured data compression, and index compression.

The remainder of this document will focus on the topic of index compression.
About Index Compression

An index is a data structure that improves the performance of data retrieval operations at the cost of additional
writes and storage space to maintain the structure itself. It is very common to find multiple indexes being
created on a single table to support a multitude of access paths for applications.

Indexes are used extensively in OLTP and mixed workload environments, as they are capable of efficiently
supporting a wide variety of access paths to the data stored in relational tables. This can cause indexes to
contribute a greater share to the overall storage of a database when compared to the size of the base tables
alone. Often, indexes take upward of 50% of the total database space and it is not uncommon to have over 20
indexes on a single table (many more in some cases).

Every additional index that is created on the table, even though it speeds up certain queries, introduces
additional overhead for the DML or data change operations, which maintain these indexes. It is highly critical
to store and manage these indexes as efficiently as possible, from both storage and efficient access perspectives.

Index Key Compression, also referred to as Index Prefix Compression, has the potential to substantially reduce
the overall size of indexes and helps both multi-column unique indexes and non-unique indexes alike. As a
result, it is one of the most critical index optimizations features available to DBAs for effectively managing the
space used by the indexes.

Index Key (Prefix) Compression (included with Enterprise Edition)

Index Key Compression allows for compressing portions of the key values in an index segment (or Index-
Organized Table (IOT)), by reducing the storage inefficiencies of storing repeating values multiple times. It
compresses the data by splitting the index key into two parts:

o  Prefix Entries: the leading group of columns, which are potentially shared across
multiple key values

o  Suffix Entries: the suffix columns, which are unique to every index key

As the prefixes are potentially shared across multiple keys in a block, these can be stored more optimally (only
once per block) and shared across multiple suffix entries, resulting in the index data being compressed.

4 Index Compression Overview Tech Brief/ Version 23ai

Copyright © 2025, Oracle and/or its affiliates / Public

|



http://docs.oracle.com/cd/B28359_01/server.111/b28310/indexes003.htm

ORACLE

Index Key compression is done in the leaf blocks of a B-Tree index. The keys are compressed locally within an
index leaf block (both the prefix and suffix entries are stored within same block). Suffix entries make up the
compressed representation of the index key. Each one of these compressed rows refers to the corresponding
prefix, which is stored in the same block. By storing the prefixes and suffixes locally in the same block, each
index block is self-contained, and it is possible to construct the complete key without incurring any additional
block IO. Re-constructing the key is a very inexpensive memory only operation.

The illustration below shows the logical representation of a non-unique index leaf block with nine keys in it.
The block on the left is the uncompressed representation, where every row stores all the key columns along
with the ROWID of the corresponding table row. As apparent from the data, there are many repeats in the
leading columns (the Prefix Columns), and these can be represented in the block more efficiently.

The block on the right is the compressed representation of the same index leaf block, where the prefix columns
are stored only once, and each user row stores the reference to the corresponding prefix, which results in the
index data being compressed.

B / \
‘/ INDEX LEAF BLOCK HEADER \ INDEX LEAF BLOCK HEADER ’

J A,
A R
/ 01JACK, MARCHOS
>1JACK, MARCHO8 L
UserKeys P 13ACK MARCHO Prefix Table
b2 JAKE MARCHOT—
3{JOSE, MARCHO6|
J
0:JACK, MARCHO5 <ROWIDO> 0:bl<rRoWIDO>
; JAEK, MAﬁgHgg <28W|g;> 1:j0/<ROWID1>
:JACK, MARCHO8 <ROWID2> 2:/1}<ROWID2>
SUACK MARC108 sROWIDE> 7 s
: L UserKeys 4:111<ROWID4>
i i ot R
: = 2 6:{2|<ROWID6>
7:JOSE, MARCHO6 <ROWID7> 7:3<ROWID7>

K 8:JOSE, MARCHO6 <ROWIDS> b P g
9:JOSE, MARCHO6 <ROWID9> k ol <ROWIDS/

Logical Structure of a non-compressed Logical Structure of a compressed non-

non-unique index leaf block unique index leaf block

Enabling Index Key Compression

For new indexes and index partitions, enabling Index Key Compression is easy - simply CREATE the index or
index partition and specify the index compression clause. See the example below:

CREATE INDEX idxname ON tabname(coll, col2, col3) COMPRESS;
An existing index or index partition can be REBUILT compressed using the syntax shown below:
ALTER INDEX idxname REBUILD COMPRESS;

By default, the prefix consists of all indexed columns for non-unique indexes, and all indexed columns
excluding the last one for unique indexes. Alternatively, it is possible to specify the prefix length as part of the

index compression clause, which is the number of columns in the prefix entries:

CREATE INDEX idxname ON tabname(coll, col2, col3) COMPRESS 2;

5 Index Compression Overview Tech Brief/ Version 23ai

Copyright © 2025, Oracle and/or its affiliates / Public

|




ORACLE

The number, prefix column length, after the COMPRESS keyword denotes how many columns to compress.
The maximum prefix length for a non-unique index is the number of columns in the index key, and for a

unique index is the number of key columns minus one.

Prefix entries are written to the index block only if the index block does not already contain that prefix. They
are available for sharing across multiple suffix entries immediately after being written and remain available
until the last referencing suffix entry is deleted from the block.

Although key compression reduces the storage requirements of an index by sharing parts of keys across
multiple entries, there is a small CPU overhead to reconstruct the key column values during index lookup or
scans, which is minimized by keeping the prefixes locally in the block.

In many cases the overhead to construct the complete user row is offset by more efficient representation of the
block, ability to fit many more user rows in a block, reduction in IO required to read the index rows, and better
buffer cache efficiency such that the applications see improvement in overall performance.

Index Key Compression achieves a more optimal representation of an index and ensures that it stays
permanently compressed without any subsequent overhead on the maintenance operations. As a result, it has a
positive impact on the storage and space savings, but also achieves secondary benefits such as better cache
efficiency, fewer leaf blocks and less deep tree resulting in potentially fewer logical IOs and cheaper execution

plans.
Uses of Index Key Compression
Index Key compression can be extremely useful in many different scenarios, a few of which are listed below:

¢ Index Key Compression can be used with a non-unique index where ROWID is
appended to make the key unique. If such an index is compressed using key
compression, the duplicate key is stored only once as a prefix entry in the index block
without the ROWID. The remaining rows become suffix entries consisting of only the
ROWID

¢ Index Key Compression can be used with a unique multicolumn index (key
compression is not possible for unique single column index because there is a unique
piece but there are no prefix grouping pieces to share)

¢ Index Key Compression can also be used with Index Organized Tables. The same

considerations as unique multicolumn indexes apply
Determining the Optimal Prefix Column Length

The key to getting good index compression is identifying which indexes will benefit from it and correctly
specifying the prefix column length for those indexes. This requires a deep understanding of the data to choose
the most optimal prefix column count.

If you want to estimate the ideal compression ratio and the percentage of leaf blocks that can be saved, you
need to look at INDEX_ STATS view after ANALYZING the index:

ANALYZE INDEX index name VALIDATE structure;

SELECT name, height, blocks, opt_cmpr_count, opt_cmpr_pctsave
FROM  index_stats

WHERE name = index name;

6 Index Compression Overview Tech Brief/ Version 23ai

Copyright © 2025, Oracle and/or its affiliates / Public

|




ORACLE

e “OPT_CMPR_COUNT” indicates the number of columns to compress in the index to
get maximum space savings in the leaf blocks (prefix column length)

e “OPT_CMPR_PCTSAVE” indicates the percentage reduction in leaf block space used
if index is compressed using this prefix length

Index Key Compression Limitations

Compression can be very beneficial when the prefix columns of an index are repeated many times within a leaf
block. However, if the leading columns are very selective, or if there are not many repeated values for the
prefix columns, then index prefix compression may not be the best solution.

In these scenarios, Oracle still creates prefix entries storing all unique combinations of compressed column
values within a leaf block. The index rows will refer to the prefix entry, which are not shared (if at all) by other
index rows. Thus, it is possible that compression in these cases is not beneficial and could end up increasing the
index size due to the overhead of storing all the prefix entries.

For index compression to be beneficial, ensure that low cardinality columns are the leading columns in a
concatenated index. Otherwise, there is a risk of getting negative compression such that leaf blocks can no
longer store as many keys as their non-compressed counterparts.

Additionally, there is no point in compressing a single column unique index or compressing every column in a
concatenated, multi-column unique index. In these cases, compression will result in an index structure that
increases in size rather than decreasing (negative compression) due to all the overhead associated with having
prefix entries for every index row.

The key to getting good index compression is identifying which indexes will benefit from it and correctly
specifying the prefix column length. The discussion above on how to figure out the optimal Prefix Column
Length can help, but this approach has the following down sides:

e Requires a deep understanding of the data to choose the most optimal prefix column
count

e  Specified prefix column count may not be optimal to produce the best compression
ratio for every block in the index

¢ Requires running ANALYZE INDEX to obtain an optimal prefix column count,
which produces the optimal count for the index. This is not at the granularity of a
block, so it may not yield the best compression ratio. Additionally, running
ANALYZE INDEX takes an exclusive lock on the table, effectively making the table
“offline” for this period

o Possible to get negative compression, as pointed out earlier, such as in the case where
the specified prefix columns are unique in a block

Application developers and DBAs need to be very selective on which indexes to compress and correctly set the
prefix column count for these indexes. Oracle protects you under certain obvious conditions, but it is your
responsibility to compress the indexes in the right manner.

Compressing Index-Organized Tables (I0Ts)

Before any reorganization, it is recommended that you determine if prefix compression would be useful, and if
so, how may prefix columns should be specified.

7 Index Compression Overview Tech Brief/ Version 23ai

Copyright © 2025, Oracle and/or its affiliates / Public

|




ORACLE

This step is required for Index Key Compression and requires some knowledge of the data. If there are repeated
leading columns, then typically prefix compression is beneficial.

For example, if the keys look like:

ABCD
ACDB
ADBC

Since there is a repeated first column, and that can be stored once as a prefix, compression would reduce the
suffix rows to the following:

BCD
CDB
DBC

It is a more difficult choice if there are rows like:

ABCD
ABDC
ACEF
AGHI

Here, it is difficult to know whether to choose 1 or 2 prefix columns to compress — choosing 2 would mean we
store the following prefix rows:

AB
AC
AG

Choosing one would mean only storing “A”. The “optimal” choice is the one that saves most space in
prefix+suffix rows together.

As indicated earlier, ANALYZE INDEX determines the optimal count for how many columns to compress. For
example, with DDL like this:

CREATE TABLE tiot (cl1 number, c2 number, c3 number, constraint tiot_pk primary key
(c1, c2, c3)) ORGANIZATION INDEX;

ANALYZE INDEX can be used as follows:

ANALYZE INDEX TIOT_PK VALIDATE STRUCTURE;
SELECT OPT_CMPR_COUNT, OPT_CMPR_PCTSAVE FROM index_stats;

OPT_CMPR_COUNT OPT_CMPR_PCTSAVE

ANALYZE INDEX indicates that a prefix count of 1 would give an estimated 20% saving in space.

The IOT segment can be rebuilt, enabling compression, using the following ALTER TABLE MOVE command
online and indicates 1 column is to be used for compression.

ALTER TABLE tiot MOVE COMPRESS 1 ONLINE;

8 Index Compression Overview Tech Brief/ Version 23ai

Copyright © 2025, Oracle and/or its affiliates / Public

|




ORACLE

Below are some SQL commands/examples on how to achieve index key compression on an existing non-
compressed IOT (as well as examples of SQL commands that are invalid with IOTs).

ALTER TABLE <table-name> MOVE COMPRESS [number of columns] [ONLINE]
Examples:

e alter table tiot move compress online;

e alter table tiot move compress 1 online;
e alter table tiot move compress 2 online;
e alter table tiot move compress 1

ALTER TABLE <table-name> COMPRESS

This is an invalid command for an IOT.

ALTER INDEX REBUILD COMPRESS;

This is an invalid command for an IOT. Attempts to rebuild the Primary Key of the IOT will result in:

ORA-28650: Primary index on an IOT cannot be rebuilt

DBMS_REDEFINITION can be used to compress an existing non-compressed IOT. Please see the Oracle
dbms_redefinition documentation for more details.

Using partition exchange is not possible as a means of enabling compression when using prefix compression of
indexes. The reason is that a partitioned IOT cannot be moved as a whole, nor can a partition be moved to be
compressed if the table (IOT) is not compressed.

Further, can a partition be exchanged unless both the partition and the table have the same compression
attribute (i.e., they are both (non) compressed already).

Index entries, with many duplicate keys, can be compressed making it possible to reduce both the storage
overhead and the access overhead for large index range scans or fast full scans. Prefix compression can be very
beneficial when the prefix columns of an index are repeated many times within a leaf block.

However, if the leading columns are very selective or if there are not many repeated values for the prefix
columns, then index prefix compression may not be the best solutions.

Advanced Index Compression (requires Advanced Compression)

Advanced Index Compression, a feature of Advanced Compression, simplifies index compression and at the
same time achieves much higher compression ratios for indexes. Advanced Index Compression enables the
highest levels of data compression and provides enterprises with tremendous cost-savings and performance
improvements due to reduced I/O.

Advanced Index Compression is an enabling technology for multiple compression levels - LOW and HIGH.
Average storage savings can range from up to 2x to 5x depending on which compression level is implemented.
With substantial storage savings from Advanced Index Compression, organizations can drastically reduce and
often eliminate their need to purchase new storage for several years.

This document will discuss each of the compression levels, in detail, in the next sections.

9 Index Compression Overview Tech Brief/ Version 23ai

Copyright © 2025, Oracle and/or its affiliates / Public

|




ORACLE

Advanced Index Compression LOW

Unlike the previously discussed Index Key Compression, Advanced Index Compression LOW computes the
prefix column count for compressed indexes. Rather than using a static prefix count for all index leaf block, it
aims towards computing an optimal prefix count for every index leaf block in the index.

The correct and most optimal numbers of prefix columns are computed automatically on a block-by-block basis,
and thus produce the best compression ratio possible. It is now possible to have different index leaf blocks
compressed with different prefix column count or not be compressed at all if there are no repeating prefixes.

The illustration below shows logical structure of three consecutive index leaf blocks, each compressed
differently.

e  For the block to the left, the optimal prefix column count is 2, and the block is
compressed with the first 2 columns from the index key in the prefix

e For the block in the center, since there are no repeats in the leading columns, the
block is left uncompressed

e For the block on the right, the optimal prefix column count is 1 column, and the
block is compressed with only 1 leading prefix column

/[, INDEX LEAF BLOCK J\ '/[f INDEX LEAF BLOCK }\ /[ INDEX LEAF BLOCK J\

0: LARA
LILEAR - prefix Table

0: JACK, MARCHOE )
1:1aKE, MaRcHo7 Prefix Table

2: J0SE, MARCHOG User Keys 2-LEON
3:LILY
/" oo<rowns

1: 0 <ROWID2> 0:0, MARCHO1 <ROWID17>
2:0<ROWID3> 0: KALE, MARCHOT <ROWID11> 120, MARCHOZ <ROWID1E
3:1<ROWIDS> 1: KARA, MARCHOZ <ROWID1 2> 2:0, MARCHOS <ROWID19>
4:1 <ROWIDS> 2 KATE, MARCHOS <ROWID13= 321, MARCHOZ <ROWIDZO>
5: 2 <AOWIDE> 3:KIAN, MARCHOT <ROWID14> 4:1, MARCHOG <ROWID21=>
6:2 <ROWIDT> 4 KYLE, MARCHOS <ROWID15> 5:2, MARCHOS <ROWID2 2=
7:2 <ROWIDS> 5: KYRA, MARCHOS <ROWID16> 6:2, MARCHOS <ROWIDZ23>
B: 7:3, MARCHO2 <ROWID24>
9:

12 <ROWIDS>
\L_\_ : 2 <ROWID10> _//' \\\. /
Logical Structure of a compressed

index leaf block with 2 columns in
prefix entry

kE:S.M.ﬁRCHOE<ROWID25} J

Logical Structure of a compressed
index leaf block with 1 column in
prefix entry

Logical Structure of a non-
compressed index leaf black

The dynamic algorithm to compute prefix column count automatically on block-by-block basis guarantees
maximizing the compression benefits for the index and makes sure that the compressed index segment is never
bigger in size than its non-compressed counterpart.

Enabling Advanced Index Compression LOW

Advanced Index Compression LOW can be enabled easily by specifying the COMPRESS option for indexes.
New indexes can be automatically created as compressed, or the existing indexes can be rebuilt compressed.

CREATE INDEX idxname ON tabname (coll, col2, col3) COMPRESS ADVANCED LOW;

Index-Organized Tables (IOT's) are essentially indexes and can be compressed with Advanced Index
Compression (LOW).

10 Index Compression Overview Tech Brief/ Version 23ai

Copyright © 2025, Oracle and/or its affiliates / Public

|




ORACLE

Advanced Index Compression HIGH

Advanced Index Compression HIGH is geared towards dramatically improving index compression ratios. It
introduces many additional compression techniques, which improves the compression ratios significantly while
still providing efficient OLTP access.

With Advanced Index Compression HIGH, every index leaf block can contain compressed and uncompressed
rows. The compressed index key entries are stored physically as Compression Units (a concept like Oracle
Hybrid Columnar Compression), utilizing more complex compression algorithms on a potentially larger
number of index keys to achieve higher levels of compression. While the recently inserted keys and modified
keys are stored in the non-compressed region of the leaf block.

Advanced Index Compression uses an internal threshold to trigger (re) compression of the leaf block. Recently
inserted rows are buffered uncompressed in the block, which is then compressed as the block fullness
approaches this threshold. This ensures that the cost of compression is amortized over multiple DML operations
and that not every operation incurs compression overhead.

With indexes, this internal threshold is geared towards avoiding index block splits and alleviating the need to
allocate additional leaf blocks to the index structure. As stated earlier, Advanced Index Compression utilizes
complex sets of compression algorithms to achieve higher compression ratios.

Some of the compression techniques used with Advanced Index Compression HIGH include (but are not
limited to):

Intra-column Prefix Replacement

Intra-column prefix replacement algorithm exploits the fact that, because of index rows being sorted in key
order, there is a high likelihood that a prefix of each key matches the corresponding prefix of the preceding key
even at sub key column level.

Replacing the matching prefixes from each row with a reference to the corresponding symbol gives good
compression benefits. Additionally, if the cardinality of the symbol table indexes is low, and many index keys
have a matching prefix, bit encoding the symbol table references can further improve compression benefits.

Length Byte Compression

It is very common to find many rows in an index with short column lengths. Thus, it is possible to encode these
lengths in less than a byte (as with the uncompressed and prefix compressed index) and hence save space.

Additionally, if all key columns in the block have the same length, the block level fixed length can be stored.
Duplicate Key Removal

If the index block has many duplicates, it is possible to realize significant space savings by storing the key
exactly once followed by a list of ROWIDs associated with the key in sorted order.

Intra-column prefix compression can then be applied on top of this transformed representation to further
compress the now unique set of keys.

ROWID List Compression

ROWID List Compression is an independent transformation that takes the set of ROWIDs for each unique
index key and represents them in a compressed form, ensuring that the compressed ROWID representation is
logically maintained in the ROWID order to allow for efficient ROWID based lookup.

11 Index Compression Overview Tech Brief/ Version 23ai

Copyright © 2025, Oracle and/or its affiliates / Public

|




ORACLE

Row Directory Compression

The general idea behind Row Directory Compression is to layout the compressed rows contiguously in the
increasing offset order within each 256-byte region of the index block, which enables maintaining a base offset
(once per 256 bytes) and a relative 1 byte offset per compressed row.

Flag and Lock Byte Compression

Generally, index rows are not locked, and the flags are similar for all the rows in the index block. These lock
and flag bytes on disk can be represented more efficiently provided it is possible to access and modify them.
Any modification to the flag or lock bytes requires these to be uncompressed.

Note that there is no need to provide the compression technique to use with Advanced Index Compression. Not every
compression technique is applicable to every index. The decision on which compression algorithms are applicable to an
index is made real-time and can differ from index-to-index and block-to-block.

Enabling Advanced Index Compression HIGH

Advanced Index Compression HIGH can be enabled easily by specifying the COMPRESS option for indexes.
New indexes can be automatically created as compressed, or the existing indexes can be rebuilt compressed.

CREATE INDEX idxname ON tabname(coll, col2, col3) COMPRESS ADVANCED HIGH;
Uses of Advanced Index Compression

Advanced Index Compression works well on all supported indexes, including the ones that were not good
candidates for prefix key compression. Creating an index using Advanced Index Compression reduces the size
of all unique and non-unique indexes (or at least guarantees that the size does not increase due to negative
compression) and at the same time improves the compression ratio significantly while still providing efficient
access to the indexes.

The following graph shows sample compression ratios for two customers using Advanced Index Compression in
an SAP environment. Along with substantially reducing the storage footprint for the indexes, these workloads
also observed significant improvement in the overall system performance.

700
600
500
400
300 H Advanced LOW (GB)

200 - m Advanced HIGH (GB)
100

® Uncompressed (GB)

Consumer Goods Govt. Agency
Mfg

Advanced Index Compression with Partitioned Indexes

For partitioned indexes, users can specify the compression clause for the entire index or on a partition-by-
partition basis. Therefore, organizations can choose to have some index partitions compressed, while others are

not.

The following example shows a mixture of compression attributes on the partitioned indexes:

12 Index Compression Overview Tech Brief/ Version 23ai

Copyright © 2025, Oracle and/or its affiliates / Public

|

W Y6 (7 "W’




ORACLE

CREATE INDEX my_test_idx ON test(a, b) COMPRESS ADVANCED HIGH local
(PARTITION pl COMPRESS ADVANCED LOW, PARTITION p2 COMPRESS, PARTITION p3,
PARTITION p4 NOCOMPRESS);

The next example below shows Advanced Index Compression support on partitions where the parent index is

not compressed:

CREATE INDEX my_test_idx ON test(a, b) NOCOMPRESS local (PARTITION pl COMPRESS
ADVANCED LOW, PARTITION p2 COMPRESS ADVANCED HIGH, PARTITION p3);

Advanced Index Compression Limitations

e Advanced Index Compression is not supported for Bitmap Indexes
e Advanced Index Compression is not supported for compress Functional Indexes

Summary

The massive growth in data volume, being experienced by organizations, introduces significant challenges.
Companies must quickly adapt to the changing business landscape without influencing the bottom line. IT
managers need to efficiently manage their existing infrastructure to control costs yet continue to deliver
extraordinary application performance.

With Advanced Index Compression, it is now possible to simply enable compression for all your B-Tree
indexes, and Oracle Database will only compress every index leaf block when beneficial, while taking care of
computing the optimal prefix column length for every block. This makes index compression truly local at a
block level, where both the compression prefix table as well as the decision on how to compress the leaf block
is made locally for every block and aims towards achieving the most optimal compression ratio for the entire
index segment, while still providing efficient access to the indexes.

Using Advanced Index Compression, along with other Oracle Advanced Compression features, organizations
can efficiently manage their increasing data requirements with minimal administrative intervention —

minimizing database storage costs while continuing to achieve the highest levels of application performance.
Get Started with Compression Advisor

An easy way to get started, with Advanced Index Compression, is by using compression advisor. The
“DBMS_COMPRESSION” PL/SQL package (commonly called compression advisor) gathers compression-related
information within a database environment. Compression advisor provides organizations with the storage
reduction information needed to make compression-related usage decisions.

The output of running compression advisor is an estimation of the compression ratio for the specific table or
index that was the target of compression advisor. The output indicates the “COMPRESSION RATIO” presented
as a number such as 2.1. This number indicates that, for this specific table or index, the estimated compression
ratio is 2.1x, which represents about a 50% reduction in the footprint of the table or index should compression
be enabled.

More Information

e See the Oracle Darabase Administrator’s Guide documentation for more information about Oracle

compression.

o See the PL/SQL Packages and Types Reference for more information, and usage examples, about
Compression Advisor (DBMS_COMPRESSION) and Online Redefinition (DBMS_REDEFINITION)

13 Index Compression Overview Tech Brief/ Version 23ai

Copyright © 2025, Oracle and/or its affiliates / Public

|




ORACLE

Connect with us
Call +1.800.0RACLEI1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

B blogs.oracle.com '3 facebook.com/oracle ﬂ twitter.com/oracle

Copyright © 2025, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted
to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular
purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

14 Index Compression Overview Tech Brief/ Version 23ai

Copyright © 2025, Oracle and/or its affiliates / Public

= W Y6 (»““¢7 "W




