

Eliminate Application
Downtime with Oracle
Database and .NET

Senior Principal Product Manager

Oracle
September 17, 2019

Alex Keh

Agenda

• Application Continuous Availability

• Fast Application Notification

• Planned Maintenance Outages

• Unplanned Outages

Application
Continuous
Availability

Minimizes downtime

In-flight work is lost

Rolling maintenance at DB

Predictable runtime performance

Errors may be visible

Design for single failure

Basic HA building blocks

Removes user perspective downtime

In-flight work is preserved

Maintenance is hidden

Predictable outage performance

Errors only if unrecoverable

Handles multiple concurrent failures

Builds on top of HA

High Availability Continuous Availability

From HA to Continuous Availability

Continuous Availability

Continuous Availability is not absolute availability.

• Probable DB outages and maintenance events are masked from the app

• App continues with no errors and within specified response time objectives
while processing these events

Key points

• Planned maintenance and likely unplanned outages hidden from applications

• There is neither data loss nor data inconsistency

• Majority of work (% varies by customer) completes within recovery time SLA

• May appear as a slightly delayed execution

Many customers achieve Continuous Availability today

.NET Application Continuous Availability

Goal: Make Oracle .NET applications continuously available

• Not just Oracle DB servers

What does that mean?

• Apps handle recoverable errors, such as DB and network failures transparently

• Developers add no to little code to handle failures gracefully

Benefits

• Improved end user service levels

• Greater developer productivity

• Less administrative time spent handling failover

.NET Application Continuous Availability

Database has numerous availability solutions

• RAC, Data Guard, GoldenGate, Global Data Services, RAC One Node, etc.

What about for the middle-tier for client HA?

• ODP.NET works with each DB availability solution

• Main scenarios: planned maintenance and unplanned outages

• Errors and interruptions automatically masked to end users during outages

Fast Application
Notification

FAN in a Nut Shell

FAN events specify what changed, where, when
• Server initiated messages

• ODP.NET apps receive these messages

• Adjusts connection behavior automatically

ODP.NET subscribers receive FAN over either
• Oracle Notification Service (ONS): ODP.NET 12c and higher
• Except unmanaged ODP.NET 12c with Oracle DB 11.2 or earlier

• AQ: ODP.NET 11g and lower

ONS is faster, more scalable, eliminates firewall issue, supports
Active Data Guard, and consolidates publish/subscribe service

FAN

Rapid notification about DB and service state changes

Event types
• Down

• Received quickly to invoke failover

• Planned Down
• Drains sessions for planned maintenance with no user interruption

• Up
• Re-allocates sessions when services resume

• Load %
• Advice to balance sessions for RAC locally and GDS globally

• Affinity
• Advice when to keep conversation locality

Planned
Maintenance
Outages

Oracle .NET app uses ODP.NET pooling

FAN alerts ODP.NET of impending downtime or service relocation
• ODP.NET stops allocating new connections to that DB node

• Idle connections closed

• Connections returned to the pool are closed

Pool draining feature
• Part of Fast Connection Failover (FCF)

Shutdown commences when all connections are closed
• Optionally set a maximum timeout upon which shutdown occurs

End user experience: Little to no disruption

Planned Outage – How Availability Is Maintained

Pool Draining Example and Settings

Relocate service example
• srvctl relocate service –database <database name> –service <service name>

–drain_timeout 120 –stopoption IMMEDIATE –oldinst <existing instance>

ODP.NET settings
• “Pooling=true” (default)

• “HA Events = true” – connection pool attribute
• In ODP.NET 12.2+, set to true by default

Recommend using Oracle Database 11.2.0.4+ and ODP.NET 11.2.0.4+

Pool Draining for Data Guard Switchovers

Data Guard 12.2+ supports pool draining
• SWITCHOVER TO <database name> [WAIT <timeout in seconds>];

Switchovers require primary to shut down before standby comes up
• End users may request a connection during that time

• With no available DB to serve the request, users receive timeout errors

• But this can be prevented by “pausing” ODP.NET requests

Pool Draining for Data Guard Switchovers

ODP.NET ServiceRelocationConnectionTimeout setting blocks
incoming connection requests until standby is up or timeout expires

• Eliminates/Reduces connection timeout errors

• Set in .NET config file or OracleConfiguration class

• Default = 90 seconds

Oracle TNSNAMES settings complementary to blocking connection
requests

• RETRY_COUNT
• Number of times ADDRESS list traversed before connection attempt terminates

• RETRY_DELAY
• Delay in seconds between subsequent retries for a connection

RETRY_COUNT and RETRY_DELAY

TNSNAMES.ORA Sample Configuration

alias =(DESCRIPTION_LIST =

(DESCRIPTION=

(RETRY_COUNT=10)(RETRY_DELAY=5)

(ADDRESS_LIST=(ADDRESS = . . .)(ADDRESS= . . .))

(CONNECT_DATA=(SERVICE_NAME=hr_svc))) .

(DESCRIPTION=

(RETRY_COUNT=10)(RETRY_DELAY=5)

(ADDRESS_LIST=(ADDRESS = . . .)(ADDRESS=. . .))

(CONNECT_DATA=(SERVICE_NAME=hr_svc2))))

Retry while service is
unavailable

Planned Maintenance Outage

For non-pooled scenarios

Use Transparent Application Failover (TAF)
• Upon planned outage, automatically reconnect to an available DB instance

• Restore session state – available in 12.2+
• i.e. NLS, timezone, action, module, etc.

• Reposition cursors to position they were on prior to failure

• Replay initial transaction statement – available in 12.2+
• Any DML or stored procedure

TAF is an OCI level feature
• Unmanaged ODP.NET only

Unplanned
Outages

Use Fast Connection Failover

FAN alerts ODP.NET of immediate DB node, service, etc. failure
• ODP.NET stops allocating new connections to failed entity

• Idle connections closed

• Active connections are closed

Benefits (assuming another DB instance is available)
• New users are not allocated invalid connections

• No need to clear pools explicitly

Application Continuity (AC)

Recover active queries and transactions seamlessly after unplanned
DB outages from a recoverable error

Masks hardware, software, network, storage errors, and timeouts
• Available with RAC, RAC One Node, and Active Data Guard

Benefits
• AC replays in-flight work on recoverable errors

• No additional ODP.NET code required

• Transparent to end users (except for a slight delay)

• Built in session state tracking

• Restores and enforces
session state before replay

• Discovers and advances
request boundaries

• Keeps mutables for SQL

• Disables side-effects

• Adapts as applications
change: apps protected for
the future

Database
Requests

Errors and
Timeouts
Hidden

TAC

Transparent Application Continuity (TAC)

TAC Explained

Normal Operation

ODP.NET marks DB
requests

Server tracks session
state, decides which calls
to replay, disables side
effects

ODP.NET holds original
calls, their inputs, and
validation data

Failover Phase 1:
Reconnect

Checks replay is enabled

Verifies timeliness

Creates a new
connection

Checks target database is
legal for replay

Uses Transaction Guard
to guarantee commit
outcome

Failover Phase 2: Replay

Restores and verifies the
session state

Replays held calls,
restores mutables
automatically

Ensures results, states,
messages match original

On success, returns
control to the application

New with TAC

New ODP.NET TAC Features

Each request can contain multiple transactions
• TAC supports all transactions in request, not just the first

• Uses implicit request boundary

Smaller memory usage
• Implicit request boundary ensures more timely replay queue purges

New features require DB 18c+ with unmanaged ODP.NET 19c+

ODP.NET AC Settings

Set “Pooling=true” (default)

“Application Continuity=true” (default) in the connection string
• Available in ODP.NET 12.2+

AC requires unmanaged ODP.NET and DB 12.2+

TAC requires unmanaged ODP.NET and DB 18c+

Transaction Guard

ODP.NET determines transaction commit status even upon a DB
failure without custom coding

Used by AC

Benefit
• Ensures accurate knowledge of transaction outcome

App can query transaction outcome
• OracleConnection properties return transaction status

• OracleLogicalTransaction class

Requires Oracle Database 12c and ODP.NET 12c+

Transaction Guard Scenario

1. ODP.NET receives FAN down event or error

2. IsRecoverable=false  roll back
IsRecoverable=true  re-submit

3. To re-submit, retrieve
OracleConnection.OracleLogicalTransaction

4. Retrieve transaction status with
OracleLogicalTransaction.GetOutcome

5. If committed and completed, done.
If not committed nor completed, re-submit.

Transaction Guard
ODP.NET Catch Block Code Sample

catch (Exception ex)
{

if (ex is OracleException)
{

// It's safe to re-submit the work if the error is
// recoverable and the transaction has not been committed

if (ex.IsRecoverable && ex.OracleLogicalTransaction != null &&
!ex.OracleLogicalTransaction.Committed)

{
// safe to re-submit work

}
else
{

// do not re-submit work
}

}
}

Questions?

Hands on Labs

HOL4642: Building .NET Applications with Oracle Database

Tuesday

2:15-3:15 Moscone West 3019

Wednesday

9:00am-10:00 Moscone West 3019

Copyright © 2019 Oracle and/or its affiliates.

What’s Ahead

Wednesday

5:00-5:45 Developing and Deploying Oracle

Database Applications in Kubernetes

Moscone South 313

Thursday

9:00AM-9:45

1:15 – 2:00

2:15-3:00

Accelerate Oracle Database .NET

Application Performance - Moscone

South 313

Exploring the Multicloud: Working with

Azure and Oracle Autonomous Database

- Moscone South 209

Running Oracle Database and

Applications in Docker Containers on

Windows - Moscone South 313

Get a personalized demo

Visit us in the Moscone South
demogrounds

DEV-013: .NET Development and
Windows Integration for Oracle
Database

Copyright © 2019 Oracle and/or its affiliates.

Thank You

Senior Principal Product Manager

Oracle
September 17, 2019

Alex Keh

Session Survey

Help us make the content
even better. Please complete
the session survey in the
Mobile App.

The preceding is intended to outline our general product direction. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing decisions. The development,
release, timing, and pricing of any features or functionality described for Oracle’s products may change
and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and
prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed
discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and
Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q
under the heading “Risk Factors.” These filings are available on the SEC’s website or on Oracle’s website
at http://www.oracle.com/investor. All information in this presentation is current as of September 2019
and Oracle undertakes no duty to update any statement in light of new information or future events.

Safe Harbor

http://www.oracle.com/investor

