

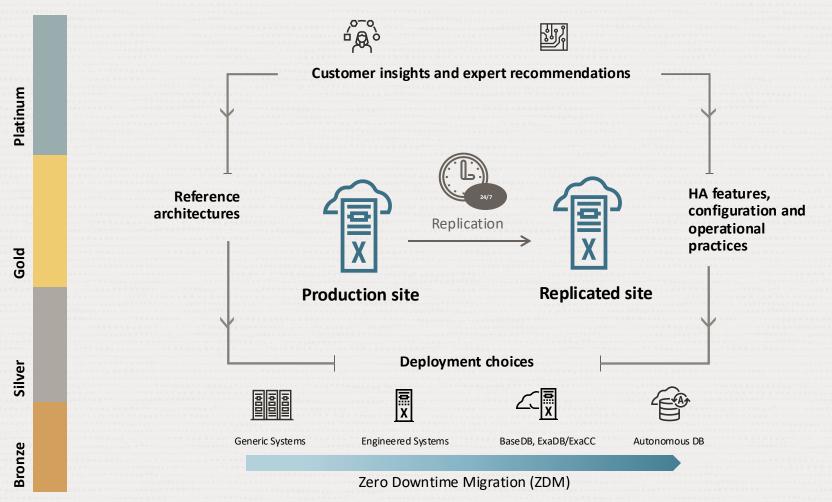
Achieving Continuous Availability for Your Applications with Oracle MAA

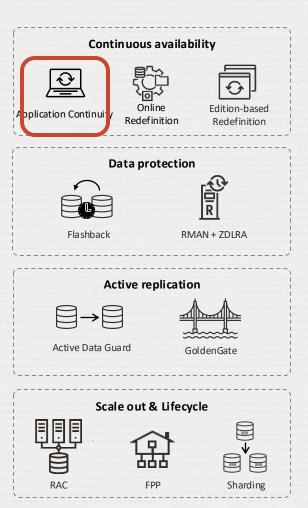
October 17–20, 2022
Caesars Forum and The Venetian
Las Vegas, NV

Topics Covered in this Presentation

Why Transparent Application Continuity (TAC) should be your default choice

High Availability requirements to ensure Business Continuity


- How to efficiently use TAC for planned maintenance and unplanned outages
- What to do when Transparent Application Continuity does not fit

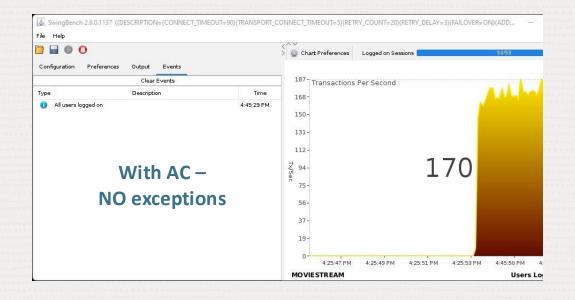

Customer Example

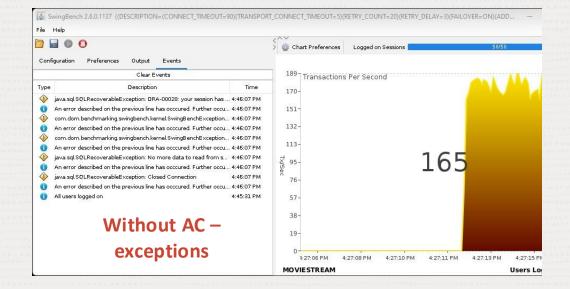
Oracle Maximum Availability Architecture (MAA)

Standardized Reference Architectures for Never-Down Deployments

From Maximum Availability to Business Continuity

Maximum Availability


- Minimizes downtime
- In-flight work is lost
- Rolling maintenance on DB-level
- Predictable runtime performance
- Errors may be visible
- High Availability building blocks

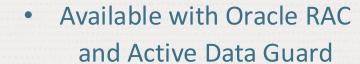

Business Continuity

- Eliminates downtime for users
- In-flight work is preserved
- Maintenance is hidden
- Predictable performance
- Errors visible only if unrecoverable
- Builds on top of High Availability

Application Continuity (AC) in Simple Terms

One Solution – Two Flavors

Application Continuity (AC)


 For planned maintenance and unplanned outages

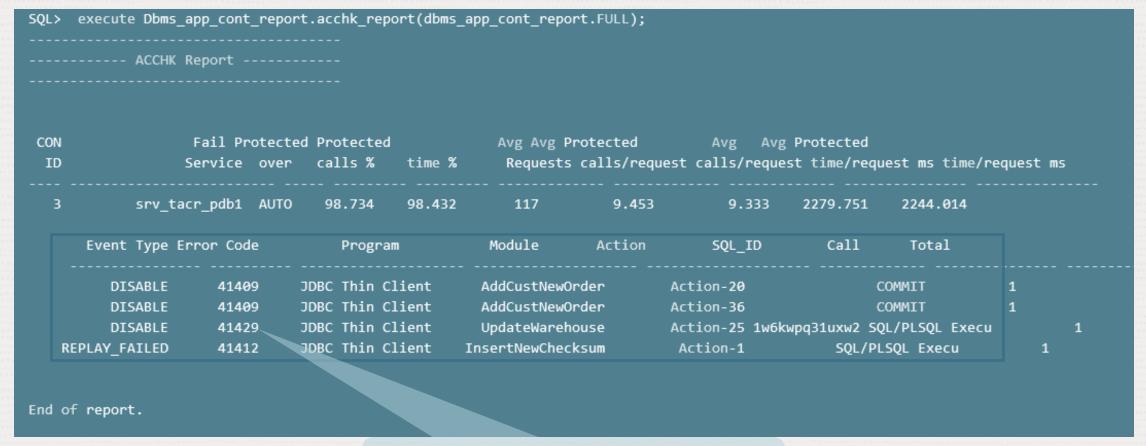
 Available with Oracle RAC and Active Data Guard

Requires Oracle connection pool

Transparent Application Continuity (TAC)

Default on Oracle Autonomous Database

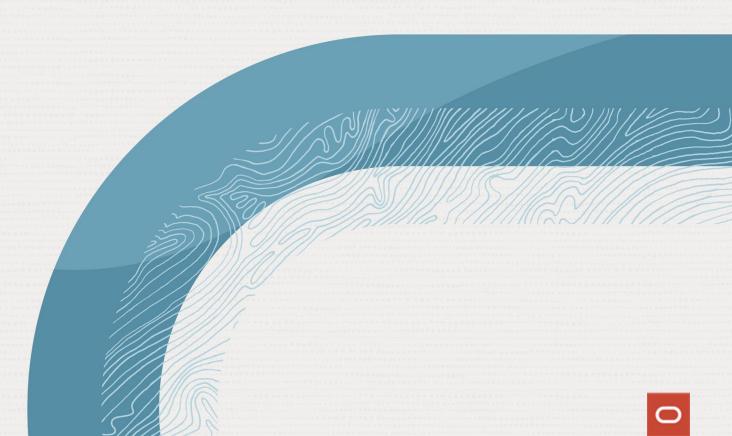
Transparent Application Continuity


Default on Oracle Autonomous Database - Why?

- Based on the same HA requirements as AC, TAC covers most SQL use cases:
 - TAC works with and without Oracle connection pools.
 - ACchk can be used to determine the protection provided.
 - Oracle 19c Databases and Clients and later provide best results.
- High Availability (HA) requirements include:
 - · Use of Oracle Database services.
 - Using an optimized TNS connection string.
 - Draining is part of maintenance operations.
 - Active Data Guard for Disaster Recovery.
- TAC seamlessly improves business continuity on Autonomous Database
 - Using the same standards, TAC can help improve your application availability, too.

Determine the Protection Provided by TAC with ACchk

And catch applications that use coding practices that prevent safe replays


Disable Reason

ORA-41429: side effect detected

Business Continuity

High Availability Requirements

Use Database Services

Always use user-defined database services to connect with any database/PDB

```
$ srvctl add service -d <DATABASE NAME> -s <SERVICE NAME> [-pdb <PDB NAME>]
                  -preferred <INSTANCE NAME, ...> -available <INSTANCE NAME, ...>
                  -notification true
 RAC HA
                  -reset state level1 [21c+]
                  -failover restore AUTO
                  -commit outcome TRUE
 Application
                  -failovertype AUTO
 Continuity (AC)
                  -replay init time 600
                  -drain timeout 300
 Workload
                  -stopoption IMMEDIATE
 Draining
                  -role PRIMARY
```

Never use the default service

Example: Autonomous Pre-Created Services

TYPE	NONTLS (ADB-D)	TLS NAME	STANDBY (ADB-D)	TLS STANDBY (ADB-D)
High priority OLTP ¹	tpurgent	tpurgent_tls	tpurgent_ro	tpurgent_ro_tls
Typical OLTP ¹	tp	tp_tls	tp_ro	tp_ro_tls
High priority Reporting ²	high	high_tls	high_ro	high_ro_tls
Typical Reporting ²	medium	medium_tls	medium_ro	medium_ro_tls
Low priority Reporting ²	low	low_tls	low_ro	low_ro_tls

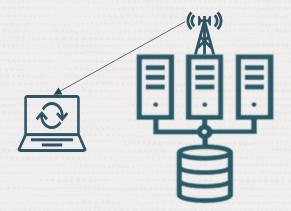
¹Transparent Application Continuity enabled by default

² Use DBMS_APP_CONT_ADMIN.ENABLE_TAC to enable TAC, or Use DBMS_APP_CONT_ADMIN.ENABLE_AC to enable AC

Connection Best Practices

- Connecting to a custom database service for a "sales application"
- Full Description:

```
jdbc:oracle:thin:@
(DESCRIPTION =
  (CONNECT_TIMEOUT=90) (TRANSPORT_CONNECT_TIMEOUT=3)
  (RETRY_COUNT=50) (RETRY_DELAY=3) (FAILOVER=ON)
  (ADDRESS_LIST=
    (LOAD_BALANCE=on)
    (ADDRESS=(PROTOCOL=tcp)(HOST=CLOUD-SCANVIP.example.com)(PORT=1522)))
  (CONNECT_DATA=(SERVICE_NAME=Sales_svc)))
```



Configure Fast Application Notification and use Draining

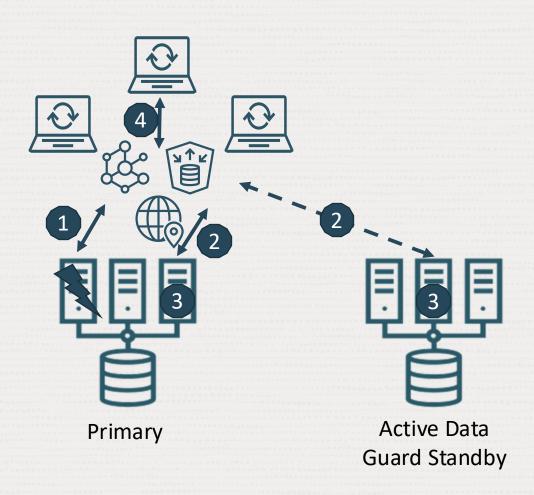
Fast Application Notification (FAN)

- Breaks applications out of TCP timeouts.
- Notifies clients of status changes on the database service level via ONS.
- The Oracle Notification Server (ONS) is automatically configured.

Draining describes

- an operation that causes sessions to complete their work on a given instance
- to prepare the node or the database for maintenance.

Draining is a function of the Oracle Database, supported by Oracle drivers, connection pools, and natively by SQL.

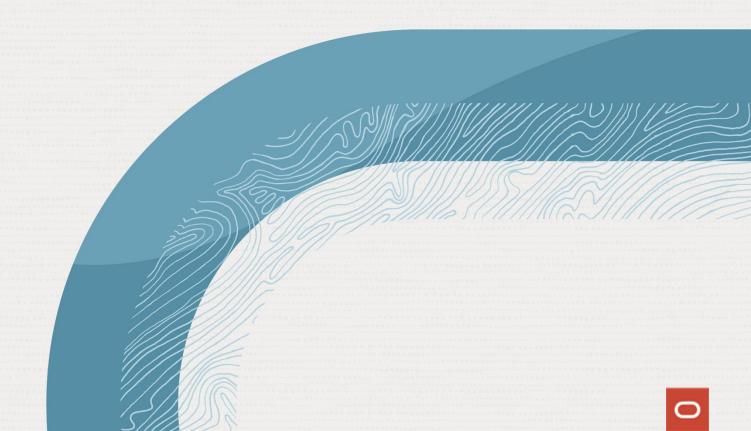


Planned and Unplanned Outages

With Transparent Application Continuity

Unplanned Outages and Planned Failover

Actions on database level:


- 1. DB Request interrupted by an error or FAN or drain
- 2. Session reconnects to the available service
- 3. Database (DB) Request replays automatically
- 4. Result from Database Request returned to user

(Transparent) Application Continuity

- Fails over within SLA's
- Guarantees commit at most once
- Verifies:
 - Correct database
 - Correct session state
 - Correct results

What to do when Transparent Application Continuity does not fit

Oracle Database 19c – Offering Two Flavors

	TAC – simple apps	AC – pooled apps
Oracle or 3 rd party connection pools with request boundaries	Yes, if no unrestorable state*	Yes
Non-pooled or no request boundaries	Yes, if no cursors in fetch and no unrestorable state*	No
Reenables after COMMIT or other disabling call	Yes, if no cursors in fetch and no unrestorable state*	No, until request boundary
SQL, Transactions & Queries	Yes	Yes
PL/SQL	Yes, disables side effects	Yes, allows side effects
Restores state at start of replay	Yes	Yes
Restores mutables	Yes	Yes
Replays over DBlinks	No	Yes
Replays when client state and results match	Yes, server state must also match	Yes

^{*}Unrestorable state examples: PL/SQL global session state, temp tables, session lobs, OJVM

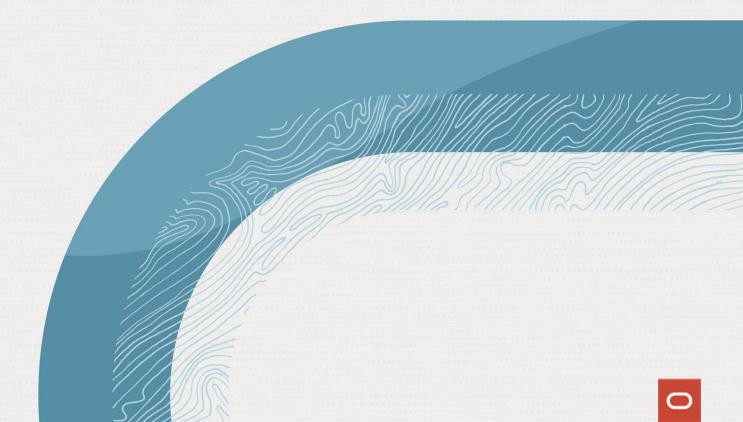
Which Flavor to Use

Use Transparent Application Continuity (TAC) for applications

- Using INSERT, UPDATE, DELETE, SELECT, ALTER SESSION basic ANSI SQL calls
- That may or may not use Oracle connection pools
- That can accept that a replay of side effects is disabled automatically
- Not requiring transactions over database links to replay

Use Application Continuity (AC) for applications

- Using SQL and PL/SQL global session state, temp tables, session LOBs
- Can use an Oracle connection pool or other compliant pools (RedHat JBoss)
- That need replay of side effects enabled (such as email, audit, logging, file transfer)
- Need database link support



Application Continuity for Packaged Applications

- Packaged applications, from Oracle and other vendors, pose special challenges
 - What has the vendor tested regarding workload draining and Application Continuity?
 - Certification and support will constrain what versions and configuration options are available
 - Often designed for older technology stacks, limiting what can be achieved
- Oracle & other packaged applications are adopting draining and Application Continuity
 - E-Business Suite support for workload draining with SQL connection tests (under development)
 - JD Edwards support for workload draining (TAC replay planned to be available soon)
 - Fusion Middleware support for workload draining (GA) and Application Continuity (under development)
 - PeopleSoft supports draining and TAC replay
 - Siebel has its own replay mechanism
 - SAP support for workload draining (TAC replay support planned to be available soon)

Customer Example

Oracle Application Continuity in Gaia Oracle Service

Improving app resilience across the firm by simplifying resilient design for our application engineers

Madhu Bhimaraju

Executive Director

Head of Development & Modernization

Consumer & Community Banking (Chase)

Doug Burns

Vice President

Oracle Engineering Lead

GTI Platform Services

Challenges & Solutions

Planned Outages

- Connection Pool Draining, FAN & TAF
- Drain connection pools and allow transactions to complete within application-specific timeframes.
- Transactions that don't complete within the timeout are rolled back. Apps need to detect and replay.

Unplanned Outages

• In-flight Transactions are *always* rolled back to preserve database integrity. Apps need to detect and replay.

Oracle 19c Transparent Application Continuity

- Automatically tracks in-flight transactions and **replays them** when service is restored.
- Zero/Low Dev Effort. Other than connecting to a different Service we provide; possibly defining transaction boundaries; and using a different driver - no detection/recovery code required.
- Modern App Design is still relevant. Works best with connection pools and well-designed apps that borrow connections, execute one transaction then return to the pool.

Gaia Oracle Service (GOS)

- Private Oracle Cloud Opinionated. Rapid Provisioning. No-DBA model.
- Customers Strategic platform for internal Oracle databases 60-70% cloud v. non-cloud in 3 years and on a great trajectory Critical zero-downtime applications e.g. Debit, Payments etc.,
- MAA Closely follows detailed MAA recommendations All Production databases are RAC clusters and have at least one ADG Standby.
- Security & Hygiene Mandatory application of Release Updates. Opinionated security model.
- Self-Service ... means self-service! Full Repave capabilities, Rolling Patching, Switchover/Failover, Create/Stop/Start Services.

Key Lessons

Application Feature

Application, Application Server configuration and great software engineers.

For the DBAs in the audience ... this requires collaboration.

Client Versions

Non-negotiable and not a significant issue for us.

Testing

There is play-testing/PoC and real testing. How do you recreate all possible scenarios?

Sense of wonder!

Once all the guidance has been followed and requirements met, it's an amazing feature!

Information Sources

Google Search is not your friend. Best sources of information are from the Oracle Product Team and are all available at "Oracle **Application Continuity**"

ORACLE Cloud World

Thank you

Application Continuity Best Practices

