

Running LLaMA 3–8B Instruct Inference using NVIDIA NIM on Oracle Compute Cloud@Customer and Private Cloud Appliance

A Step-by-Step Guide to Deploying and Running LLaMA 3–8B Inference with NVIDIA NIM on Oracle Compute Cloud@Customer and Private Cloud Appliance using NVIDIA L40S GPUs

Version [1.0] Copyright © 2025, Oracle and/or its affiliates

Purpose statement

This document provides a step-by-step guide for deploying and running inference with the LLaMA 3–8B Instruct NVIDIA Inference Microservice (NIM) on Oracle Compute Cloud@Customer or Private Cloud Appliance. It is intended for users who have already configured their environment using the companion 'Deploying NVIDIA AI Enterprise on Oracle Compute Cloud@Customer or Private Cloud Appliance's guide.

Disclaimer

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle software license and service agreement, which has been executed and with which you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation and upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any features or functionality described in this document remains at the sole discretion of Oracle. Due to the nature of the product architecture, it may not be possible to safely include all features described in this document without risking significant destabilization of the code.

Table of contents

Introduction	4
Prerequisites	4
Environment Validation	4
Setup Script for Inference	6
Verify NIM Service	8
Send Inference Request	9
Additional Resources	9
Acknowledgements	9

³ Running LLaMA 3–8B Instruct Inference using NVIDIA NIM on Oracle Compute Cloud@Customer and Private Cloud Appliance / Version [1.0] Copyright © 2025, Oracle and/or its affiliates / Public

Introduction

Oracle Compute Cloud@Customer (C3) and Private Cloud Appliance (PCA) support NVIDIA's L40S GPU and is validated for NVIDIA AI Enterprise software, enabling the deployment of GPU-accelerated workloads including NVIDIA Inference Microservices (NIMs).

NVIDIA AI Enterprise provides certified drivers, runtime libraries, and support services needed to reliably run NVIDIA Inference Microservices in production.

NVIDIA Inference Microservice (NIM) accelerates time-to-value by simplifying deployment of optimized AI inference endpoints using pre-packaged containers. These microservices are built on NVIDIA AI Enterprise and are tuned for high-performance serving of NVIDIA-optimized models.

This technical brief provides step-by-step guidance on deploying and running inference using NVIDIA's LLaMA 3–8B Instruct NIM on Oracle Compute Cloud@Customer (C3) or Private Cloud Appliance (PCA) a core part of Oracle's Edge Cloud portfolio.

Note: This document is for informational and self-supported guidance only. For advisory services, contact your Oracle Sales representative.

Prerequisites

For this installation we have used NVIDIA AI Enterprise platform release 6.0, within the Compute Cloud@Customer, M3.10.3. Before beginning, ensure the following:

- Ubuntu-based VM deployed on C3 with NVIDIA L40S GPU support.
- NVIDIA AI Enterprise stack installed, including:
 - o NVIDIA GPU Driver
 - o CUDA Toolkit
 - NVIDIA Container Toolkit
- NGC (NVIDIA GPU Cloud) account, NGC CLI installed, and NGC API key generated.
- jq utility installed for parsing JSON output (e.g., sudo apt-get install jq)
- NVIDIA AI Enterprise deployment guide: Refer to the companion document <u>Deploying Nvidia AI Enterprise on</u>
 <u>Oracle Compute Cloud@Customer</u> or Private Cloud Appliance for environment setup steps.

Environment Validation

After deploying NVIDIA AI Enterprise, run the following commands to confirm readiness:

nvidia-smi

⁴ Running LLaMA 3–8B Instruct Inference using NVIDIA NIM on Oracle Compute Cloud@Customer and Private Cloud Appliance / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

NVIDI	A-SMI 5	75.51.03		Driver	Version: 575.51.03	CUDA Versio	on: 12.9
GPU I	Name Temp	Perf			Bus-Id Disp.A Memory-Usage	GPU-Util	Compute M MIG M
0 I N/A	NVIDIA 28C	L40S P8	32W	On / 350W	00000000:00:05.0 Off		
Proces							
GPU	GI ID	CI	PID	Type	Process name		GPU Memor Usage

Confirms GPU driver installation and GPU visibility.

docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi

```
[ubuntu@nvaie-nim:~/models$ nvidia-smi
Sat May 17 00:56:43 2025
 NVIDIA-SMI 575.51.03
                       Driver Version: 575.51.03 CUDA Version: 12.9
 GPU Name
                 Persistence-M | Bus-Id
                                       Disp.A | Volatile Uncorr. ECC |
 Fan Temp Perf
                  Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M.
                                                       MIG M.
______
                        On | 00000000:00:05.0 Off |
  0 NVIDIA L40S
                                                          0 1
 N/A 28C
         Р8
                    32W / 350W I
                                 0MiB / 46068MiB |
                                                 9%
                                                       Default
                                                         N/A
 Processes:
                    PID Type Process name
                                                     GPU Memory
 GPU GI
        CI
     ID ID
                                                     Usage
No running processes found
```

Validates Docker's GPU access through the NVIDIA Container Toolkit.

```
nvcc --version
```

```
ubuntu@nvaie-nim:~$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Thu_Nov_18_09:45:30_PST_2021
Cuda compilation tools, release 11.5, V11.5.119
Build cuda_11.5.r11.5/compiler.30672275_0
```

Verifies that the CUDA toolkit is correctly installed.

```
ngc --version
```

```
ubuntu@nvaie-nim:~$ ngc --version
NGC CLI 3.148.1
```

Confirms NGC CLI is installed.

```
Echo $NGC API KEY
```

Ensures API key is set.

```
echo "$NGC_API_KEY" | docker login nvcr.io --username '$oauthtoken' --password-stdin
```

Logs in to NVIDIA container registry.

5 Running LLaMA 3–8B Instruct Inference using NVIDIA NIM on Oracle Compute Cloud@Customer and Private Cloud Appliance / Version [1.0] Copyright © 2025, Oracle and/or its affiliates / Public

6600

```
ngc registry image list --format_type=csv nvcr.io/nim/* | column -t -s,
Lists all available NIMs from NGC catalog.
```

Setup Script for Inference

```
Prepare a setup script (eg. LLaMA3-8b-Instruct) to streamline the inferencing workflow:
# Export API key
export NGC_API_KEY="<your-api-key>"
# Persist the key across sessions
echo "export NGC API KEY=\"$NGC API KEY\"" >> ~/.bashrc
# Docker login
echo "$NGC API KEY" | docker login nvcr.io --username '$oauthtoken' --password-stdin
# Define image
export CONTAINER NAME=Llama3-8B-Instruct
export Repository=nim/meta/llama3-8b-instruct
export IMG_NAME="nvcr.io/${Repository}:latest"
# Setup model cache
export LOCAL NIM CACHE=~/.cache/nim
mkdir -p "$LOCAL NIM CACHE"
chmod -R a+w "$LOCAL NIM CACHE"
```

Run NIM container

```
sudo docker run --rm -it \
    --runtime=nvidia \
    --gpus all \
    --shm-size=16gb \
    -e "NGC_API_KEY=$NGC_API_KEY" \
    -v "$LOCAL_NIM_CACHE:/opt/nim/.cache" \
    -u $(id -u):$(id -g) \
    --network=host \
    --name "$CONTAINER_NAME" \
    "$IMG_NAME"
```

6666

⁶ Running LLaMA 3–8B Instruct Inference using NVIDIA NIM on Oracle Compute Cloud@Customer and Private Cloud Appliance / Version [1.0] Copyright © 2025, Oracle and/or its affiliates / Public

#-p 8000:8000 maps the container's inference endpoint to the host machine

Note: -p 8000:8000 maps the container's inference endpoint to the host machine. In this setup, since the host port was not the same as the container port, we used --network=host instead. This mode is helpful in environments with restrictive Docker networking, firewall rules, or potential port conflicts. It exposes all container ports directly to the host, simplifying connectivity.

Run the script

```
[ubuntu@nvaie-nim:~/models$
ubuntu@nvaie-nim:~/models$ ./llama3-8b-instruct
Login Succeeded
== NVIDIA Inference Microservice LLM NIM ==
_____
NVIDIA Inference Microservice LLM NIM Version 1.0.3
Model: meta/llama3-8b-instruct
Container image Copyright (c) 2016-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
This NIM container is governed by the NVIDIA AI Product Agreement here:
https://www.nvidia.com/en-us/data-center/products/nvidia-ai-enterprise/eula/.
A copy of this license can be found under /opt/nim/LICENSE.
The use of this model is governed by the AI Foundation Models Community License
here: https://docs.nvidia.com/ai-foundation-models-community-license.pdf.
ADDITIONAL INFORMATION: Meta Llama 3 Community License, Built with Meta Llama 3.
A copy of the Llama 3 license can be found under /opt/nim/MODEL LICENSE.
2025-05-28 00:45:18,115 [INFO] PyTorch version 2.2.2 available.
2025-05-28 00:45:18,692 [WARNING] [TRT-LLM] [W] Logger level already set from environment. Discard new verbosity: error 2025-05-28 00:45:18,692 [INFO] [TRT-LLM] [I] Starting TensorRT-LLM init. 2025-05-28 00:45:18,781 [INFO] [TRT-LLM] [I] TensorRT-LLM inited.
[TensorRT-LLM] TensorRT-LLM version: 0.10.1.dev2024053000
INFO 05-28 00:45:19.414 api_server.py:489] NIM LLM API version 1.0.0
INFO 05-28 00:45:19.415 ngc_profile.py:218] Running NIM without LoRA. Only looking for compatible profiles that do not support LoRA.
INFO 05-28 00:45:19.415 ngc_profile.py:220] Detected 3 compatible profile(s).
INFO 05-28 00:45:19.416 ngc_injector.py:107] Valid profile: 09e2f8e68f78ce94bf79d15b40a21333cea5d09dbe01ede63f6c957f4fcfab7b (tensorrt_l
lm-140s-fp8-tp1-throughput) on GPUs [0]
INFO 05-28 00:45:19.416 ngc_injector.py:107] Valid profile: d8dd8af82e0035d7ca50b994d85a3740dbd84ddb4ed330e30c509e041ba79f80 (tensorrt_1
lm-l40s-fp16-tp1-throughput) on GPUs [0]
INFO 05-28 00:45:19.416 ngc_injector.py:107] Valid profile: 8835c31752fbc67ef658b20a9f78e056914fdef0660206d82f252d62fd96064d (vllm-fp16-
tp1) on GPUs [0]
INFO 05-28 00:45:19.416 ngc_injector.py:142] Selected profile: 09e2f8e68f78ce94bf79d15b40a21333cea5d09dbe01ede63f6c957f4fcfab7b (tensorr
 _llm-l40s-fp8-tp1-throughput)
INFO 05-28 00:45:19.417 ngc_injector.py:147] Profile metadata: feat_lora: false
INFO 05-28 00:45:19.417 ngc_injector.py:147] Profile metadata: gpu: L40S
INFO 05-28 00:45:19.417 ngc_injector.py:147] Profile metadata: gpu_device: 26b5:10de
INFO 05-28 00:45:19.417 ngc_injector.py:147] Profile metadata: Ilm_engine: tensorrt_llm
INFO 05-28 00:45:19.417 ngc_injector.py:147] Profile metadata: pp: 1
INFO 05-28 00:45:19.417 ngc_injector.py:147] Profile metadata: precision: fp8
INFO 05-28 00:45:19.417 ngc_injector.py:147] Profile metadata: profile: throughput
INFO 05-28 00:45:19.417 ngc_injector.py:147] Profile metadata: tp: 1
```



```
INFO 05-28 00:45:19.418 ngc_injector.py:173] Model workspace is now ready. It took 0.001 seconds
INFO 05-28 00:45:19.420 async_trtllm_engine.py:74| Initializing an LLM engine (v1.0.0) with config: model='/tmp/meta--llama3-8b-instruct
-ozjoeyvy', speculative_config=None, tokenizer='/tmp/meta--llama3-8b-instruct-ozjoeyvy', tokenizer_mode=auto, revision=None, tokenizer_r
evision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=8192, download_dir=None, load_format=auto, tensor_parallel_size
=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_c
onfig=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), seed=0)
WARNING 05-28 00:45:19.666 logging.py:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings ar
e fine-tuned or trained.
INFO 05-28 00:45:19.675 utils.py:201] Using 0 bytes of gpu memory for PEFT cache
INFO 05-28 00:45:19.675 utils.py:207] Engine size in bytes 9094006204
INFO 05-28 00:45:19.675 utils.py:211] available device memory 47663742976
INFO 05-28 00:45:19.675 utils.py:218] Setting free_gpu_memory_fraction to 0.9
WARNING 05-28 00:45:26.31 logging.py:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings are
fine-tuned or trained.
INFO 05-28 00:45:26.39 serving_chat.py:347] Using default chat template:
ader id|>
'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{%
endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>
WARNING 05-28 00:45:26.243 logging.py:314] Special tokens have been added in the vocabulary, make sure the associated word embeddings ar
e fine-tuned or trained.
INFO 05-28 00:45:26.250 api_server.py:456] Serving endpoints:
 0.0.0.0:8000/openapi.json
 0.0.0.0:8000/docs
 0.0.0.0:8000/docs/oauth2-redirect
 0.0.0.0:8000/metrics
 0.0.0.0:8000/v1/health/readv
 0.0.0.0:8000/v1/health/live
 0.0.0.0:8000/v1/models
 0.0.0.0:8000/v1/version
 0.0.0.0:8000/v1/chat/completions
 0.0.0.0:8000/v1/completions
INFO 05-28 00:45:26.250 api_server.py:460] An example cURL request:
curl -X 'POST' \
  'http://0.0.0.0:8000/v1/chat/completions' \
 -H 'accept: application/json'
 -H 'Content-Type: application/json' \
 -d '{
   "model": "meta/llama3-8b-instruct",
    "messages": [
       "role":"user"
       "content": "Hello! How are you?"
       "role":"assistant",
       "content": "Hi! I am quite well, how can I help you today?"
       "role": "user",
       "content": "Can you write me a song?"
    "top_p": 1,
   "n": 1,
    "max_tokens": 15,
    "stream": true,
    "frequency_penalty": 1.0,
   "stop": ["hello"]
INFO 05-28 00:45:26.288 server.py:82] Started server process [31]
INFO 05-28 00:45:26.288 on.py:48] Waiting for application startup.
INFO 05-28 00:45:26.295 on.py:62] Application startup complete.
INFO 05-28 00:45:26.296 server.py:214] Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
```

Verify NIM Service

Once the container starts, verify the service health from another terminal:

```
curl localhost:8000/v1/health/readv
```

A successful response confirms that the NIM service is running and listening for requests. Ensure the container has fully started and is serving before sending the inference request.

8 Running LLaMA 3–8B Instruct Inference using NVIDIA NIM on Oracle Compute Cloud@Customer and Private Cloud Appliance / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

Send Inference Request

Now we send an inference request to our llma3-8b mode, asking the model via the curl command to compose a poem about redwood forest:

```
curl -s -X POST http://0.0.0.0:8000/v1/completions \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
    "model": "meta/llama3-8b-instruct",
    "prompt": "Write a 2 para poem about california's redwood forests. Format as poem",
    "max_tokens": 80,
    "temperature": 0.9
  }' | jq -r '.choices[0].text'
Sample output:
Silent sentinels of ancient earth,
Towering canopies of green rebirth,
Majestic redwoods stand, a sentinel true,
Guarding secrets of a forest anew.
In twilight hush, where cypress whispers low,
The redwoods' ancient voices whisper slow,
Timeless wisdom shared, of sun-kissed days,
Echoes of the past, in whispers that sway
```

Additional Resources

- Deployment NVIDIA AI Enterprise on Oracle Compute Cloud@Customer
- NIM Demo: Running Inferencing Using NVIDIA NIM using Oracle Compute Cloud@Customer

Acknowledgements

- Sheetal Sabharwal, Principal Product Manager, Oracle Edge Cloud
- Salman Ashfaq, Master Principal Sales Consultant, Oracle Solution Center
- Michael Reed, Solution Specialist Director, Oracle Solution Center

⁹ Running LLaMA 3–8B Instruct Inference using NVIDIA NIM on Oracle Compute Cloud@Customer and Private Cloud Appliance / Version [1.0] Copyright © 2025, Oracle and/or its affiliates / Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

B blogs.oracle.com

f facebook.com/oracle

witter.com/oracle

Copyright © 2025, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

 $Oracle, Java, MySQL, and\ NetSuite\ are\ registered\ trademarks\ of\ Oracle\ and/or\ its\ affiliates.\ Other\ names\ may\ be\ trademarks\ of\ their\ respective\ owners.$

Author: Sheetal Sabharwal, Anderson Souza

10 Running LLaMA 3–8B Instruct Inference using NVIDIA NIM on Oracle Compute Cloud@Customer and Private Cloud Appliance / Version [1.0] Copyright © 2025, Oracle and/or its affiliates / Public

6666