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Purpose statement 

This document provides an overview of features and enhancements included in Oracle 
MySQL HeatWave AutoML. It is intended solely to help you assess the benefits of MySQL 
HeatWave AutoML and to plan your I.T. projects. 

Disclaimer 

This document in any form, software or printed matter, contains proprietary information 
that is the exclusive property of Oracle. Your access to and use of this confidential material 
is subject to the terms and conditions of your Oracle software license and service 
agreement, which has been executed and with which you agree to comply. This document 
and information contained herein may not be disclosed, copied, reproduced or distributed 
to anyone outside Oracle without prior written consent of Oracle. This document is not part 
of your license agreement, nor can it be incorporated into any contractual agreement with 
Oracle or its subsidiaries or affiliates. 

This document is for informational purposes only and is intended solely to assist you in 
planning for the implementation and upgrade of the product features described. It is not a 
commitment to deliver any material, code, or functionality, and should not be relied upon 
in making purchasing decisions. The development, release, and timing of any features or 
functionality described in this document remains at the sole discretion of Oracle. Due to the 
nature of the product architecture, it may not be possible to safely include all features 
described in this document without risking significant destabilization of the code. 

Benchmark queries are derived from the TPC-H benchmark, but results are not comparable 
to published TPC-H benchmark results since they do not comply with the TPC-H 
specification. 
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Executive Summary 

Artificial intelligence and machine learning (ML) have become pervasive technologies. 
End users now expect such capabilities in both enterprise and consumer products. The 
pace of innovation has given birth to multiple frameworks, techniques, and algorithms 
—requiring highly skilled data scientists and machine learning professionals who can 
apply them. Given the shortage of AI experts, it has become paramount to develop 
technologies that enable citizen data scientists/business users to leverage ML. 

Generative AI and vector stores can complement traditional AI and ML. AI platforms 
supporting both traditional AI/ML as well as Generative AI can allow customers to 
benefit from synergies between them and create new classes of applications. 

MySQL HeatWave uniquely integrates OLTP, lakehouse-scale analytics, machine 
learning, and Generative AI in a single solution, enabling turnkey application 
development with enhanced performance and enterprise-grade data security. MySQL 
HeatWave users can combine machine learning and generative AI with other MySQL 
HeatWave built-in capabilities, such as transaction processing and analytics across data 
warehouses and data lakes, to create powerful and novel applications delivering more 
relevant and insightful responses—without the complexity, latency, risks, and cost of 
extract, transform, and load (ETL) duplication.  
 

Current challenges of ML in databases 

Developing and using machine-learning models requires skill sets in topics like: 

• Candidate algorithms/model type selection. 
• Hyperparameters tuning per algorithm. 
• Feature engineering. 
• Data preprocessing approach per data type. 
• Drift detection and retraining. 
• Knowledge of Python, as most ML algorithm frameworks are available only in 

Python. 
 

The current approach to use machine learning typically requires users to perform ETL 
(Extract, Transform, Load) on the data stored in files and in databases. Users must learn 
and use third-party tools and libraries to train a model and then perform inference and 
explanations. In addition to being onerous and time consuming, this process can also 
proliferate data outside of the database, creating data security and governance risks. 
 

  
 
 
 
 

MySQL HeatWave AutoML 

MySQL HeatWave AutoML enables users to train a model and generate inferences and 
explanations on data in object storage as well as in MySQL Database. It provides several 
advantages: 

• Fully Automated: MySQL HeatWave AutoML fully automates the creation 
of tuned models, generating inferences and explanations, thus eliminating 
the need be an expert ML developer. 

• SQL interface: Provides the familiar MySQL interface for invoking 
machine learning capabilities. 

  

 

 

 

 
 

 

 



 

5 Business / Technical Brief  /  MySQL HeatWave AutoML  /  Version 1.0  

 Copyright © 2025, Oracle and/or its affiliates /  Public 

• In-database machine learning: Data and models always stay in-
database, reducing security risks. No need to move the data via complex 
ETL processes nor to use third-party libraries, simplifying data 
management. 

• Explanations: All models created by MySQL HeatWave AutoML can be 
explained. Enterprises have a growing need to explain the predictions of 
machine learning models to build trust, demonstrate fairness, and comply 
with regulatory requirements. 

• Performance and Scalability: The performance of MySQL HeatWave 
AutoML is much better at a lower cost than competing services such as 
Redshift ML. Furthermore, MySQL HeatWave AutoML scales with the size 
of the cluster.  

• Easy Upgrades: MySQL HeatWave AutoML leverages state-of-the-art 
open-source Python ML packages that enable continual and swift uptake 
of newer (and improved) versions. 

 

All these capabilities are available to MySQL HeatWave customers at no additional 
cost.  

Building ML models on data stored in object storage 
MySQL HeatWave Lakehouse supercharges MySQL HeatWave AutoML by enabling 
machine learning operations – such as training, prediction, and explanation – on data 
either in object storage or in MySQL Database. All machine learning tasks can be 
performed on collections of files that are easy to organize, visualize, and understand. 
This ability to use content from varied sources simplifies machine learning tasks. 

 

 

Figure 1 : Building ML models on data stored in object storage and in the database 

 

Synergy of built-in GenAI and ML 

The combination of AutoML, GenAI, and vector store, all within the database, 
delivers more value to customers. It helps reduce costs and get more accurate 
results faster. For instance, AutoML excels at rapidly identifying hidden patterns in 
structured data and acts as a filter for data that is then processed by GenAI.  
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Technology Background 
MySQL HeatWave AutoML leverages Oracle AutoML [1], which automates the task of 
generating models. It replaces the laborious and time-consuming tasks that a data 
scientist typically performs, as listed below: 

1. Preprocess the data. 
2. Select an algorithm from a set of algorithms to create a model. 
3. Select a suitable, representative sample of data. 
4. Select only the relevant features to speed up the pipeline and reduce 

overfitting. 
5. Tune the hyperparameters. 
6. Ensure the model performs well on unseen data (also called generalization). 

 

Figure 2: Machine learning pipeline automated by MySQL HeatWave AutoML 

 

Oracle AutoML has a scalable design, minimizes the number of trials by extensive use 
of meta-learning, and provides an optimal model given a time budget. This proven 
technology has been integrated in various Oracle products, including the OCI Data 
Science Service and Oracle Database. 

Security benefits 

MySQL HeatWave AutoML performs ML model training, inference, and explanations 
on the data in object storage and in MySQL Database, without the data ever leaving 
MySQL HeatWave. All data and operations are executed in memory within the MySQL 
HeatWave cluster and the trained model is automatically stored in the MySQL database 
without any user data or model being transmitted to the client. The fully automated 
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nature of the approach reduces the risk of human errors affecting security or 
computation.  

 

Figure 3: OLTP, OLAP, and ML workloads in a single database 

Performance and Scalability 

MySQL HeatWave AutoML is designed for high performance and scalability. High 
performance is achieved by the automated machine learning pipeline that consists of 
a novel non-iterative architecture comprised of multiple sequential stages. This design 
speeds up the pipeline as every stage's decision is made in a feed-forward manner. Key 
to the design is the reliance on proxy models—fast-performing models that are 
indicative of the performance of the final tuned model on a subset of a dataset. 
Furthermore, the algorithm selection stage at the beginning of the pipeline ensures 
that the downstream algorithm-dependent stages perform well without the need to 
iterate over multiple algorithms.  

The MySQL HeatWave AutoML pipeline is designed in a flexible and highly parallel 
fashion, enabling us to distribute individual model fits and multiple parallel fits to all 
available compute nodes on a given MySQL HeatWave cluster. MySQL HeatWave 
AutoML has been optimized for both intra- and inter-model parallelism to achieve 
optimal performance on MySQL HeatWave cluster nodes. MySQL HeatWave AutoML 
can scale to dozens of MySQL HeatWave nodes (hundreds of cores), significantly 
reducing the ML training runtime as the cluster scales up. Furthermore, as training data 
size grows, users can scale up the cluster size to minimize the increase in training time. 

Explainability 

The integrated explainability module of MySQL HeatWave AutoML helps users 
understand and interpret the model and its predictions.  

 

Figure 4: Model development and deployment 
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Deriving insights from the data and model helps users answer questions around what 
factors matter most, why the model performs the way it does, and how it can be 
improved.  

 

Model management and use 

Once the MySQL HeatWave cluster has been provisioned and data is loaded into 
MySQL HeatWave, users can create the model, deploy the model, and use it to create 
predictions and explanations. Periodically, users will also check the model quality. If 
model drift (which we subsequently discuss in more details in this document) is 
detected, users can check the results of model explanation and recreate the model 
using more recent data and new data features. 

 

Figure 5: Model lifecycle 

 

Create model 

MySQL HeatWave AutoML supports multiple model types such as Classification, 
Regression, Time Series Forecasting, Anomaly Detection, Recommender System etc. 
Based on the problem at hand, users must select the appropriate model type. 

MySQL HeatWave AutoML handles data preprocessing as part of the model creation, 
however, users must conduct due diligence to provide a comprehensive dataset. 

Once the key data attributes are identified, users need to consolidate the data in a train 
table and invoke the sys.ML_TRAIN procedure to create a trained model as well as an 
optimized explainer model (which can provide insight into the model’s behavior).  

Example:  

mysql> CALL sys.ML_TRAIN(‘mlcorpus.census_train’, ‘revenue’, 

JSON_OBJECT(‘task’, ‘classification’), @model); 

mysql> CALL sys.ML_TRAIN('mlcorpus.boston_train', 'target', 

JSON_OBJECT('task', 'regression'), @boston_model) 

 

Model catalog 

The model catalog is a table (MODEL_CATALOG) within the user schema 
(ML_SCHEMA_<current username>) created by ML_TRAIN if it does not already exist. 
The model catalog stores all models trained during ML_TRAIN and each model 
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becomes a row in the MODEL_CATALOG table. The model catalog makes ML models 
first-class citizens of the database, enabling them to be backed up, restored, encrypted, 
and follow other database procedures and protocols that regular database tables 
provide. The catalog also helps with the sharing of models between multiple users as 
owners can control access and rights to their tables. 

Load and invoke model 

Load and unload model  

The models stored in the model catalog must be loaded in memory before they can be 
used with the ML_MODEL_LOAD routine. A model remains loaded until it is unloaded 
using the ML_MODEL_UNLOAD routine or until the MySQL HeatWave AutoML driver 
is restarted. It is important to unload models that are not needed to run MySQL 
HeatWave AutoML effectively and free up the memory. 

Example: Load model 

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL); 

Query OK, 0 rows affected (1.12 sec) 

Example: Unload model 

mysql> CALL sys.ML_MODEL_UNLOAD(@model); 

Query OK, 0 rows affected (1.12 sec) 

 

Prediction on a row 

Users can predict the outcome for a specific row using the ML_PREDICT_ROW function. 
The sys.ML_PREDICT_ROW is a stored function that runs in-line inference on a single 
row of data using a previously trained model. The user provides the input row of data 
,in the JSON format, for which the prediction is performed using the trained model 
object.  

Example: Predict row 

mysql> SELECT sys.ML_PREDICT_ROW('{"index": 1,"age": 

38,"workclass": "Private","fnlwgt": 89814,"education": "HS-

grad","education-num": 9,"marital-status": "Married-civ-

spouse","occupation": "Farming-fishing","relationship": 

"Husband","race": "White","sex": "Male","capital-gain": 

0,"capital-loss": 0,"hours-per-week": 50,"native-country": 

"United-States"}', @model); 

| 

+------------------------------------------------------+ 

| {"age": 38, "sex": "Male", "race": "White", "index": 1, 

"fnlwgt": 89814, "education": "HS-grad", "workclass": "Private", 

"Prediction": "<=50K", "occupation": "Farming-fishing", 

"capital-gain": 0, "capital-loss": 0, "relationship": "Husband", 

"education-num": 9, "hours-per-week": 50, "marital-status": 

"Married-civ-spouse", "native-country": "United-States"} | 

+------------------------------------------------------+ 

1 row in set (2.36 sec) 
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Prediction on a table 

Users can create predictions for an entire table using the ML_PREDICT_TABLE. The 
sys.ML_PREDICT_TABLE creates and populates a new table with features and 
predictions for each row of the input table. Predictions across rows are done in parallel.  

Example: Prediction on a table  

mysql> CALL sys.ML_PREDICT_TABLE('mlcorpus.census_test_temp', 

@model, 'mlcorpus.census_predictions'); 

Query OK, 0 rows affected (4.54 sec) 

mysql> SELECT `index`, `education-num` AS education_level, `hours-

per-week` AS hours_per_week, Prediction FROM census_predictions; 

+-------+-----------------+----------------+------------+ 

| index | education_level | hours_per_week | Prediction | 

+-------+-----------------+----------------+------------+ 

|     0 |               7 |             40 | <=50K      | 

|     1 |               9 |             50 | <=50K      | 

|     2 |              12 |             40 | <=50K      | 

|     3 |              10 |             40 | >50K       | 

|     4 |              10 |             30 | <=50K      | 

+-------+-----------------+----------------+------------+ 

5 rows in set (0.00 sec) 

Explain predictions on a row 

Users can explain predictions for a specific row using the ML_EXPLAIN_ROW function. 
The sys.ML_EXPLAIN_ROW is a stored function that provides the user with an interface 
to create in-line explanations from a single row of input data. Explanations help the 
user perform knowledge discovery by explaining which features matter most to the 
model (captured during ML_TRAIN), and which features contribute the most to 
individual predictions (via ML_EXPLAIN).  

 Example: One row input 

mysql> SELECT sys.ML_EXPLAIN_ROW(‘{“index”: 1,”age”: 38,”workclass”: 

“Private”,”fnlwgt”: 89814,”education”: “HS-grad”,”education-num”: 

 9,”marital-status”: “Married-civ-spouse”,”occupation”: “Farming-

fishing”,”relationship”: “Husband”,”race”: “White”,”sex”: 

“Male”,”capital-gain”: 0,”capital-loss”: 0,”hours-per-week”: 

50,”native-country”: “United-States”}’, @model); 

| 

| {"age": 38, "sex": ”Male", ”race": ”White", ”index": 1, "fnlwgt": 

89814, "education": ”HS-grad", ”workclass": ”Private", ”Prediction": 

”<=50K", ”occupation": ”Farming-fishing", ”capital-gain": 0, 

"capital-loss": 0, "relationship": ”Husband", ”education-num": 9,  

… 
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"capital-loss_attribution": 0.0, "relationship_attribution": 0.0928, 

"education-num_attribution": 0.1305, "hours-per-week_attribution": 

0.1806, "marital-status_attribution": 0.0676, "native-

country_attribution": 0.0001} | 

+-------------------------------------------------------- 

1 row in set (4.41 sec) 

 

Explain prediction on a table 

The sys.ML_EXPLAIN_TABLE creates and populates a new table with features, 
predictions, and explanations for each row of the input table. Explanations across rows 
are completed in parallel. The loaded model's training columns must match the 
ML_EXPLAIN_TABLE input columns.  

Example: Explain prediction on a table 

mysql> CALL sys.ML_EXPLAIN_TABLE('mlcorpus_v4.census_test_naive', 

@model, 'mlcorpus_v4.census_explanations'); 

Query OK, 0 rows affected (12.95 sec) 

 

mysql> SELECT `index`, `education-num` AS education_level, `hours-

per-week` AS hours_per_week, Prediction, `education-num_attribution` 

AS education_level_attr, `hours-per-week_attribution` AS 

hours_per_week_attr FROM census_explanations; 

+-------+-----------------+----------------+------------+----------------------+---------------------+ 

| index | education_level | hours_per_week | Prediction | education_level_attr | hours_per_week_attr | 

+-------+-----------------+----------------+------------+----------------------+---------------------+ 

|     0 |               7 |             40 | <=50K      |               -0.001 |              -0.002 | 

|     1 |               9 |             50 | <=50K      |              -0.1307 |             -0.1807 | 

|     2 |              12 |             40 | <=50K      |              -0.2435 |             -0.2101 | 

|     3 |              10 |             40 | >50K       |                0.007 |              0.0053 | 

|     4 |              10 |             30 | <=50K      |               0.0007 |             -0.0002 | 

+-------+-----------------+----------------+------------+----------------------+---------------------+ 

5 rows in set (0.00 sec) 

 

Check model quality 

The sys.ML_SCORE procedure computes the model quality by generating predictions 
on given test data and comparing it to the ground truth labels. The ML_SCORE API 
requires a string argument that specifies the scoring metric to be used. MySQL 
HeatWave AutoML supports multiple standard scoring metrics, as described here for 
classification and regression. 

Example: 

mysql> CALL sys.ML_SCORE('mlcorpus_v4.census_test', 'revenue', 

@model, 'balanced_accuracy', @score); 

Query OK, 0 rows affected (5.34 sec) 

 

mysql> SELECT @score; 

+--------------------+ 

| @score             | 
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+--------------------+ 

| 0.7961280941963196 | 

+--------------------+ 

1 row in set (0.00 sec) 

 

Data drift detection 

ML models can become outdated over time and lose their ability to predict accurately. 
This may happen due to data drift, whereby distribution of input data changes overtime 
and a model trained on older data can no longer predict accurately. It is important to 
be able to measure the data drift and then retrain the model as needed on the latest 
data so that the model continues to predict accurately.  

MySQL HeatWave AutoML provides functionality to detect data drift using a drift 
detector trained during model training. Metrics such as mean and variance for the 
model features are computed during model training and stored in the model catalog. 
At the time of inference, a user can ask the trained detector to evaluate each sample’s 
drift level. The drift value can be evaluated across all samples and features or for a 
specific feature. It reveals the top three features with the highest feature drift. This 
information can be used to trigger model re-training if the samples have drifted beyond 
a preset threshold. 

 

Time Series Forecasting 

Time series forecasting involves using time ordered events from the past as well as 
other variables to predict future values.  

While analyzing time series, it’s important to exploit temporal dependency and internal 
structure with elements such as seasonality, trend, and residual. There are several time 
series forecasting algorithms, each best suited to a varying degree of strength of basic 
time-series characteristics. The choice of the optimal algorithm usually requires a 
statistician trained in time-series analysis for effective forecasting. Given the 
complexity involved, an automated approach for time series forecasting is highly 
desirable. 

MySQL HeatWave AutoML offers a fully automated forecasting pipeline that can 
automatically preprocess, select the best algorithm, and tune its hyperparameters for 
a given time-series dataset, resulting in unmatched model training performance and 
high forecasting accuracy.  
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Figure 6 : MySQL HeatWave AutoML forecasting pipeline 

 

The MySQL HeatWave AutoML automated forecasting pipeline uses a patented 
technique that consists of stages such as advanced time-series preprocessing, 
algorithm selection, and hyper parameter tuning. The advanced time-series stage 
prunes the search space and estimates basic time-series characteristics (seasonality, 
trend etc.). These estimates are used later for the algorithm selection and 
hyperparameter tuning stages. The algorithm selection stage estimates the best 
algorithm for a given time-series dataset from the set of supported algorithms. The 
hyperparameter tuning stage tunes the hyperparameters for the algorithm in a range 
suggested by the preprocessor. This results in significant speedup by reducing the 
number of trials and improves the generalization of tuned models.  

 

Users can get predictions and can specify a confidence level at which the upper and 
lower bounds of forecasted outcome can be generated. 

 

Unsupervised Anomaly Detection 

Anomaly detection is a technique for finding unusual patterns in data. It has found 
applications in a wide variety of fields, including fraud detection, network intrusion 
detection, detecting life-threatening medical conditions, quality control etc. 

Anomaly detection is particularly challenging because of issues such as lack of labelled 
data, the need for different algorithms to address various types of anomalies, and the 
unbalanced nature of data given that, by definition, anomalies are rare.   

MySQL HeatWave AutoML detects anomalies in unlabeled data using a novel and 
patented technique called Generalized kth Nearest Neighbors (GkNN), which is based 
on a single ensemble algorithm that does not require tuning of hyperparameters. It 
identifies common types of anomalies such as local, global, and clustered, which 
typically require separate algorithms. It provides high performance on the 
Unsupervised Anomaly Detection Benchmark (UADB) datasets, outperforming some of 
the most widely utilized algorithms such as k-th Nearest Neighbor (kNN) and Local 
Outlier Factor (LOF). In addition to GkNN, MySQL HeatWave AutoML supports two 
additional algorithms: Principal Component Analysis (PCA) and Generalized Local 
Outlier Factor (GLOF), a proprietary algorithm. These algorithms provide added ability 
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to detect anomalies and users can provide options in the ML_TRAIN procedure to use 
PCA and GLOF algorithms.  

MySQL HeatWave AutoML supports anomaly detection in a fully automated way so 
that the user does not need to select a specific algorithm to address a particular type of 
anomaly. This drastically improves performance given that MySQL HeatWave AutoML 
does not need to evaluate different types of algorithms based on the anomaly type, 
unlike other approaches to anomaly detection.  

 

None of the competing products such as Google BigQuery ML, Redshift ML or 
Snowflake offers a fully automated solution for anomaly detection as MySQL HeatWave 
AutoML does. 

 

Recommender system 

Recommender systems (also known as ‘recommendation systems’) are commonly 
used in e-commerce to recommend new products to users based on their prior history 
and preferences. The concept behind recommendation systems is finding patterns in 
consumer behavior to predict users’ preferences, even before they have interacted with 
the product.  

The MySQL HeatWave AutoML Recommender System leverages models based on 
collaborative filtering methods. These models are trained uniquely on past user-item 
interactions. The recommender system supports recommendations based on both 
explicit and implicit feedback.  

• Explicit Feedback: If the data is composed of ratings directly provided by the 
users, then it is categorized as explicit feedback. The user ratings can be 
positive or negative. MySQL HeatWave AutoML uses a variety of models for 
explicit feedback, including NormalPredictor, Baseline, Slopeone, 
CoClustering, SVD, SVDpp, and NMF. 

• Implicit Feedback: If the data contains information produced from user 
behavior like clicks and purchases, this is considered implicit feedback.  This 
type of data is more widespread, as the user does not have to explicitly express 
their taste about the item.  

MySQL HeatWave AutoML supports the following types of recommendations: 

• Items that the user will like  

• Users who will like an item 

• User ratings of an item  

• Identify similar users 

• Identify similar items 
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Track the progress of training, inference, and explanations 

MySQL HeatWave AutoML progress tracking can be used to monitor the progress of 
training, inference, and explanations for MySQL HeatWave AutoML.  The goal of the 
progress tracker is to provide visibility to the end user on the execution status of the 
MySQL HeatWave AutoML operations; for example, how an operation has progressed 
including which stages have been completed, any error that has occurred during the 
operation, and whether the operation has been aborted. 

The progress tracker can be invoked on MySQL HeatWave AutoML using SQL queries. 
To initiate progress tracking, the user needs to open two MySQL client terminals. The 
first terminal is used to start the machine learning query, while the second terminal is 
used to monitor the progress of the operation. 

 

Interactive Console 

The interactive console for MySQL HeatWave, and MySQL HeatWave AutoML, is an 
integrated environment that provides users the ability to manage the database schema 
objects, run interactive queries, monitor performance, and use machine learning 
capabilities such that a business analyst can easily develop applications, manage data 
objects, and machine learning models. Users can train machine learning models, score, 
and explain them, run predictions and “What-If2 scenarios to evaluate the impact of 
feature changes on model outcomes. The console is currently available for MySQL 
HeatWave on AWS. 

Scenario analysis - Users can change the values of certain features of a data record and 
compare the model outcome with the original values (aka baseline).  

 

Figure 7 : What-if analysis using interactive console 

Integration with interactive development tools 

A user can easily connect to MySQL HeatWave from interactive notebook 
environments such as Jupyter and Apache Zeppelin and run transactional, analytics, 
and machine learning queries. Users can also leverage various features available for 
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numeric computations, data processing, data visualization and more using their 
language of choice. 

 

 

Figure 8: Invoke MySQL HeatWave AutoML from a notebook environment 

 

Performance comparison 

We ran benchmarks on several datasets relevant to enterprise use cases, and compared 
the performance of training time, quality of models, and scalability with Redshift ML. 
This was done for classification and regression datasets.   

Classification comparison 

The table below compares the balanced accuracy and training times of MySQL 
HeatWave AutoML vs. Redshift ML. In some cases, Redshift ML was around 200x 
slower than MySQL HeatWave AutoML. We used geometric mean for the comparison 
to dampen the effect of these outliers. The geometric mean average indicates that 
MySQL HeatWave AutoML’s training time is ~25x faster than Redshift ML and has 
slightly better accuracy.  

This significant improvement in performance enables users to retrain models more 
frequently to improve prediction accuracy.  
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Figure 9: Accuracy and training time comparison 

 

Regression comparison 

The below table compares the r2 values and training times with Redshift ML. Using 
the geometric mean average, the results indicate that MySQL HeatWave AutoML’s 
training time is ~25x faster than Redshift ML for comparable accuracy.  

 

Figure 10: Accuracy and training time comparison 

 

Scalability comparison 

The plot below shows the impact of adding more nodes to MySQL HeatWave AutoML 
(i.e. from 1 through 16 nodes) on total training time as well as the time consumed by 
key training pipeline components for the Higgs data set. There are two key takeaways 
from this chart: 

• The most time consuming stages of the MySQL HeatWave AutoML training 
pipeline typically accelerate the most with a larger cluster.  

• The total training time was reduced from 7108 seconds to 1208 seconds as 
the cluster size was increased from 1 to 16 nodes.  
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Figure 11: Impact of larger cluster on ML pipeline 

 

• MS – Model Selection stage selects an algorithm 
• ADS – Adaptive Data Sampling stage selects an optimal number of rows for the remainder of stages 
• FS – Feature Selection stage selects the relevant subset of features 
• AT – Autotune stage is the hyperparameter optimization stage that tunes selected algorithm’s 

hyperparameters 
• FFit – Final Fit stage fits the tuned algorithm on the full dataset that includes all rows 
• Gexp – Global Explainer training stage explains the model 
• Overhead – end-to-end ML_TRAIN overhead time includes transfer of the dataset to cluster, 

initialization, and completion time 

• e2e_mltrain – end-to-end total ML_TRAIN time from MySQL client perspective. 

 

Secondly, we compared the scalability of MySQL HeatWave AutoML with Redshift ML  

 

 

Figure 12: Training speedup comparison with larger clusters 

 

Cost comparison 

For customers of MySQL HeatWave, there is no additional cost for using MySQL 
HeatWave AutoML. Customers only pay for the provisioned cluster, as opposed to 
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other services like Redshift ML where customers are charged for the use of SageMaker 
and S3 storage.  

Note that for Redshift ML, we do not calculate the costs based on Redshift ML 
documentation [5] under “Redshift ML pricing” section, as the actual cost incurred 
during training are significantly different from the documented pricing. We calculated 
the cost based on the instance shape and runtime of the SageMaker instance that was 
invoked by Redshift ML. 

Compared to Redshift ML, MySQL HeatWave AutoML is 97x cheaper in classification 
tests and 58.7x cheaper in regression tests. 

 

Figure 13 : Cost comparison for classification models 

 

Figure 14 : Cost comparison for regression datasets 

Conclusion 

MySQL HeatWave supports OLTP, real-time analytics across data warehouse and data 
lake, machine learning, and generative AI with vector store in one fully managed cloud 
service—eliminating the complex, time-consuming, and expensive ETL to separate 
services. Customers can leverage the synergy between GenAI and ML to derive 
significant benefits, including reduced cost and improved performance and accuracy. 

MySQL HeatWave AutoML, fully automates the creation of tuned ML models, 
generating inferences and explanations; no need to be an expert. Benchmarks 
demonstrate that, on average, MySQL HeatWave AutoML produces more accurate 
results than Amazon Redshift ML, trains models up to 25X faster at 1% of the cost, and 
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scales as more nodes are added. MySQL HeatWave AutoML is available at no additional 
cost to MySQL HeatWave customers. 

Resources 

Learn more about MySQL HeatWave AutoML: 
https://www.oracle.com/heatwave/automl/  

Learn more about MySQL HeatWave: https://www.oracle.com/heatwave  

Try MySQL HeatWave for free; https://www.oracle.com/heatwave/free  
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