

1 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

Business / Technical Brief

MySQL HeatWave AutoML

In-database machine learning with MySQL
HeatWave

Copyright © 2025, Oracle and/or its affiliates
Public

2 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

Purpose statement

This document provides an overview of features and enhancements included in Oracle
MySQL HeatWave AutoML. It is intended solely to help you assess the benefits of MySQL
HeatWave AutoML and to plan your I.T. projects.

Disclaimer

This document in any form, software or printed matter, contains proprietary information
that is the exclusive property of Oracle. Your access to and use of this confidential material
is subject to the terms and conditions of your Oracle software license and service
agreement, which has been executed and with which you agree to comply. This document
and information contained herein may not be disclosed, copied, reproduced or distributed
to anyone outside Oracle without prior written consent of Oracle. This document is not part
of your license agreement, nor can it be incorporated into any contractual agreement with
Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in
planning for the implementation and upgrade of the product features described. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described in this document remains at the sole discretion of Oracle. Due to the
nature of the product architecture, it may not be possible to safely include all features
described in this document without risking significant destabilization of the code.

Benchmark queries are derived from the TPC-H benchmark, but results are not comparable
to published TPC-H benchmark results since they do not comply with the TPC-H
specification.

3 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

Table of contents

Purpose statement 2

Disclaimer 2

Executive Summary 4

Current challenges of ML in databases 4

MySQL HeatWave AutoML 4

Building ML models on data stored in object storage 5

Synergy of built-in GenAI and ML 5

Technology Background 6

Security benefits 6

Performance and Scalability 7

Explainability 7

Model management and use 8

Create model 8

Load and invoke model 9

Check model quality 11

Data drift detection 12

Time Series Forecasting 12

Unsupervised Anomaly Detection 13

Recommender system 14

Track the progress of training, inference, and explanations 15

Interactive Console 15

Integration with interactive development tools 15

Performance comparison 16

Classification comparison 16

Regression comparison 17

Scalability comparison 17

Cost comparison 18

Conclusion 19

Resources 20

References 20

4 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

Executive Summary

Artificial intelligence and machine learning (ML) have become pervasive technologies.
End users now expect such capabilities in both enterprise and consumer products. The
pace of innovation has given birth to multiple frameworks, techniques, and algorithms
—requiring highly skilled data scientists and machine learning professionals who can
apply them. Given the shortage of AI experts, it has become paramount to develop
technologies that enable citizen data scientists/business users to leverage ML.

Generative AI and vector stores can complement traditional AI and ML. AI platforms
supporting both traditional AI/ML as well as Generative AI can allow customers to
benefit from synergies between them and create new classes of applications.

MySQL HeatWave uniquely integrates OLTP, lakehouse-scale analytics, machine
learning, and Generative AI in a single solution, enabling turnkey application
development with enhanced performance and enterprise-grade data security. MySQL
HeatWave users can combine machine learning and generative AI with other MySQL
HeatWave built-in capabilities, such as transaction processing and analytics across data
warehouses and data lakes, to create powerful and novel applications delivering more
relevant and insightful responses—without the complexity, latency, risks, and cost of
extract, transform, and load (ETL) duplication.

Current challenges of ML in databases

Developing and using machine-learning models requires skill sets in topics like:

• Candidate algorithms/model type selection.
• Hyperparameters tuning per algorithm.
• Feature engineering.
• Data preprocessing approach per data type.
• Drift detection and retraining.
• Knowledge of Python, as most ML algorithm frameworks are available only in

Python.

The current approach to use machine learning typically requires users to perform ETL
(Extract, Transform, Load) on the data stored in files and in databases. Users must learn
and use third-party tools and libraries to train a model and then perform inference and
explanations. In addition to being onerous and time consuming, this process can also
proliferate data outside of the database, creating data security and governance risks.

MySQL HeatWave AutoML

MySQL HeatWave AutoML enables users to train a model and generate inferences and
explanations on data in object storage as well as in MySQL Database. It provides several
advantages:

• Fully Automated: MySQL HeatWave AutoML fully automates the creation
of tuned models, generating inferences and explanations, thus eliminating
the need be an expert ML developer.

• SQL interface: Provides the familiar MySQL interface for invoking
machine learning capabilities.

5 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

• In-database machine learning: Data and models always stay in-
database, reducing security risks. No need to move the data via complex
ETL processes nor to use third-party libraries, simplifying data
management.

• Explanations: All models created by MySQL HeatWave AutoML can be
explained. Enterprises have a growing need to explain the predictions of
machine learning models to build trust, demonstrate fairness, and comply
with regulatory requirements.

• Performance and Scalability: The performance of MySQL HeatWave
AutoML is much better at a lower cost than competing services such as
Redshift ML. Furthermore, MySQL HeatWave AutoML scales with the size
of the cluster.

• Easy Upgrades: MySQL HeatWave AutoML leverages state-of-the-art
open-source Python ML packages that enable continual and swift uptake
of newer (and improved) versions.

All these capabilities are available to MySQL HeatWave customers at no additional
cost.

Building ML models on data stored in object storage
MySQL HeatWave Lakehouse supercharges MySQL HeatWave AutoML by enabling
machine learning operations – such as training, prediction, and explanation – on data
either in object storage or in MySQL Database. All machine learning tasks can be
performed on collections of files that are easy to organize, visualize, and understand.
This ability to use content from varied sources simplifies machine learning tasks.

Figure 1 : Building ML models on data stored in object storage and in the database

Synergy of built-in GenAI and ML

The combination of AutoML, GenAI, and vector store, all within the database,
delivers more value to customers. It helps reduce costs and get more accurate
results faster. For instance, AutoML excels at rapidly identifying hidden patterns in
structured data and acts as a filter for data that is then processed by GenAI.

6 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

Technology Background
MySQL HeatWave AutoML leverages Oracle AutoML [1], which automates the task of
generating models. It replaces the laborious and time-consuming tasks that a data
scientist typically performs, as listed below:

1. Preprocess the data.
2. Select an algorithm from a set of algorithms to create a model.
3. Select a suitable, representative sample of data.
4. Select only the relevant features to speed up the pipeline and reduce

overfitting.
5. Tune the hyperparameters.
6. Ensure the model performs well on unseen data (also called generalization).

Figure 2: Machine learning pipeline automated by MySQL HeatWave AutoML

Oracle AutoML has a scalable design, minimizes the number of trials by extensive use
of meta-learning, and provides an optimal model given a time budget. This proven
technology has been integrated in various Oracle products, including the OCI Data
Science Service and Oracle Database.

Security benefits

MySQL HeatWave AutoML performs ML model training, inference, and explanations
on the data in object storage and in MySQL Database, without the data ever leaving
MySQL HeatWave. All data and operations are executed in memory within the MySQL
HeatWave cluster and the trained model is automatically stored in the MySQL database
without any user data or model being transmitted to the client. The fully automated

7 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

nature of the approach reduces the risk of human errors affecting security or
computation.

Figure 3: OLTP, OLAP, and ML workloads in a single database

Performance and Scalability

MySQL HeatWave AutoML is designed for high performance and scalability. High
performance is achieved by the automated machine learning pipeline that consists of
a novel non-iterative architecture comprised of multiple sequential stages. This design
speeds up the pipeline as every stage's decision is made in a feed-forward manner. Key
to the design is the reliance on proxy models—fast-performing models that are
indicative of the performance of the final tuned model on a subset of a dataset.
Furthermore, the algorithm selection stage at the beginning of the pipeline ensures
that the downstream algorithm-dependent stages perform well without the need to
iterate over multiple algorithms.

The MySQL HeatWave AutoML pipeline is designed in a flexible and highly parallel
fashion, enabling us to distribute individual model fits and multiple parallel fits to all
available compute nodes on a given MySQL HeatWave cluster. MySQL HeatWave
AutoML has been optimized for both intra- and inter-model parallelism to achieve
optimal performance on MySQL HeatWave cluster nodes. MySQL HeatWave AutoML
can scale to dozens of MySQL HeatWave nodes (hundreds of cores), significantly
reducing the ML training runtime as the cluster scales up. Furthermore, as training data
size grows, users can scale up the cluster size to minimize the increase in training time.

Explainability

The integrated explainability module of MySQL HeatWave AutoML helps users
understand and interpret the model and its predictions.

Figure 4: Model development and deployment

8 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

Deriving insights from the data and model helps users answer questions around what
factors matter most, why the model performs the way it does, and how it can be
improved.

Model management and use

Once the MySQL HeatWave cluster has been provisioned and data is loaded into
MySQL HeatWave, users can create the model, deploy the model, and use it to create
predictions and explanations. Periodically, users will also check the model quality. If
model drift (which we subsequently discuss in more details in this document) is
detected, users can check the results of model explanation and recreate the model
using more recent data and new data features.

Figure 5: Model lifecycle

Create model

MySQL HeatWave AutoML supports multiple model types such as Classification,
Regression, Time Series Forecasting, Anomaly Detection, Recommender System etc.
Based on the problem at hand, users must select the appropriate model type.

MySQL HeatWave AutoML handles data preprocessing as part of the model creation,
however, users must conduct due diligence to provide a comprehensive dataset.

Once the key data attributes are identified, users need to consolidate the data in a train
table and invoke the sys.ML_TRAIN procedure to create a trained model as well as an
optimized explainer model (which can provide insight into the model’s behavior).

Example:

mysql> CALL sys.ML_TRAIN(‘mlcorpus.census_train’, ‘revenue’,

JSON_OBJECT(‘task’, ‘classification’), @model);

mysql> CALL sys.ML_TRAIN('mlcorpus.boston_train', 'target',

JSON_OBJECT('task', 'regression'), @boston_model)

Model catalog

The model catalog is a table (MODEL_CATALOG) within the user schema
(ML_SCHEMA_<current username>) created by ML_TRAIN if it does not already exist.
The model catalog stores all models trained during ML_TRAIN and each model

9 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

becomes a row in the MODEL_CATALOG table. The model catalog makes ML models
first-class citizens of the database, enabling them to be backed up, restored, encrypted,
and follow other database procedures and protocols that regular database tables
provide. The catalog also helps with the sharing of models between multiple users as
owners can control access and rights to their tables.

Load and invoke model

Load and unload model

The models stored in the model catalog must be loaded in memory before they can be
used with the ML_MODEL_LOAD routine. A model remains loaded until it is unloaded
using the ML_MODEL_UNLOAD routine or until the MySQL HeatWave AutoML driver
is restarted. It is important to unload models that are not needed to run MySQL
HeatWave AutoML effectively and free up the memory.

Example: Load model

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

Query OK, 0 rows affected (1.12 sec)

Example: Unload model

mysql> CALL sys.ML_MODEL_UNLOAD(@model);

Query OK, 0 rows affected (1.12 sec)

Prediction on a row

Users can predict the outcome for a specific row using the ML_PREDICT_ROW function.
The sys.ML_PREDICT_ROW is a stored function that runs in-line inference on a single
row of data using a previously trained model. The user provides the input row of data
,in the JSON format, for which the prediction is performed using the trained model
object.

Example: Predict row

mysql> SELECT sys.ML_PREDICT_ROW('{"index": 1,"age":

38,"workclass": "Private","fnlwgt": 89814,"education": "HS-

grad","education-num": 9,"marital-status": "Married-civ-

spouse","occupation": "Farming-fishing","relationship":

"Husband","race": "White","sex": "Male","capital-gain":

0,"capital-loss": 0,"hours-per-week": 50,"native-country":

"United-States"}', @model);

|

+--+

| {"age": 38, "sex": "Male", "race": "White", "index": 1,

"fnlwgt": 89814, "education": "HS-grad", "workclass": "Private",

"Prediction": "<=50K", "occupation": "Farming-fishing",

"capital-gain": 0, "capital-loss": 0, "relationship": "Husband",

"education-num": 9, "hours-per-week": 50, "marital-status":

"Married-civ-spouse", "native-country": "United-States"} |

+--+

1 row in set (2.36 sec)

10 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

Prediction on a table

Users can create predictions for an entire table using the ML_PREDICT_TABLE. The
sys.ML_PREDICT_TABLE creates and populates a new table with features and
predictions for each row of the input table. Predictions across rows are done in parallel.

Example: Prediction on a table

mysql> CALL sys.ML_PREDICT_TABLE('mlcorpus.census_test_temp',

@model, 'mlcorpus.census_predictions');

Query OK, 0 rows affected (4.54 sec)

mysql> SELECT `index`, `education-num` AS education_level, `hours-

per-week` AS hours_per_week, Prediction FROM census_predictions;

+-------+-----------------+----------------+------------+

| index | education_level | hours_per_week | Prediction |

+-------+-----------------+----------------+------------+

| 0 | 7 | 40 | <=50K |

| 1 | 9 | 50 | <=50K |

| 2 | 12 | 40 | <=50K |

| 3 | 10 | 40 | >50K |

| 4 | 10 | 30 | <=50K |

+-------+-----------------+----------------+------------+

5 rows in set (0.00 sec)

Explain predictions on a row

Users can explain predictions for a specific row using the ML_EXPLAIN_ROW function.
The sys.ML_EXPLAIN_ROW is a stored function that provides the user with an interface
to create in-line explanations from a single row of input data. Explanations help the
user perform knowledge discovery by explaining which features matter most to the
model (captured during ML_TRAIN), and which features contribute the most to
individual predictions (via ML_EXPLAIN).

 Example: One row input

mysql> SELECT sys.ML_EXPLAIN_ROW(‘{“index”: 1,”age”: 38,”workclass”:

“Private”,”fnlwgt”: 89814,”education”: “HS-grad”,”education-num”:

 9,”marital-status”: “Married-civ-spouse”,”occupation”: “Farming-

fishing”,”relationship”: “Husband”,”race”: “White”,”sex”:

“Male”,”capital-gain”: 0,”capital-loss”: 0,”hours-per-week”:

50,”native-country”: “United-States”}’, @model);

|

| {"age": 38, "sex": ”Male", ”race": ”White", ”index": 1, "fnlwgt":

89814, "education": ”HS-grad", ”workclass": ”Private", ”Prediction":

”<=50K", ”occupation": ”Farming-fishing", ”capital-gain": 0,

"capital-loss": 0, "relationship": ”Husband", ”education-num": 9,

…

11 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

"capital-loss_attribution": 0.0, "relationship_attribution": 0.0928,

"education-num_attribution": 0.1305, "hours-per-week_attribution":

0.1806, "marital-status_attribution": 0.0676, "native-

country_attribution": 0.0001} |

+--

1 row in set (4.41 sec)

Explain prediction on a table

The sys.ML_EXPLAIN_TABLE creates and populates a new table with features,
predictions, and explanations for each row of the input table. Explanations across rows
are completed in parallel. The loaded model's training columns must match the
ML_EXPLAIN_TABLE input columns.

Example: Explain prediction on a table

mysql> CALL sys.ML_EXPLAIN_TABLE('mlcorpus_v4.census_test_naive',

@model, 'mlcorpus_v4.census_explanations');

Query OK, 0 rows affected (12.95 sec)

mysql> SELECT `index`, `education-num` AS education_level, `hours-

per-week` AS hours_per_week, Prediction, `education-num_attribution`

AS education_level_attr, `hours-per-week_attribution` AS

hours_per_week_attr FROM census_explanations;

+-------+-----------------+----------------+------------+----------------------+---------------------+

| index | education_level | hours_per_week | Prediction | education_level_attr | hours_per_week_attr |

+-------+-----------------+----------------+------------+----------------------+---------------------+

| 0 | 7 | 40 | <=50K | -0.001 | -0.002 |

| 1 | 9 | 50 | <=50K | -0.1307 | -0.1807 |

| 2 | 12 | 40 | <=50K | -0.2435 | -0.2101 |

| 3 | 10 | 40 | >50K | 0.007 | 0.0053 |

| 4 | 10 | 30 | <=50K | 0.0007 | -0.0002 |

+-------+-----------------+----------------+------------+----------------------+---------------------+

5 rows in set (0.00 sec)

Check model quality

The sys.ML_SCORE procedure computes the model quality by generating predictions
on given test data and comparing it to the ground truth labels. The ML_SCORE API
requires a string argument that specifies the scoring metric to be used. MySQL
HeatWave AutoML supports multiple standard scoring metrics, as described here for
classification and regression.

Example:

mysql> CALL sys.ML_SCORE('mlcorpus_v4.census_test', 'revenue',

@model, 'balanced_accuracy', @score);

Query OK, 0 rows affected (5.34 sec)

mysql> SELECT @score;

+--------------------+

| @score |

12 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

+--------------------+

| 0.7961280941963196 |

+--------------------+

1 row in set (0.00 sec)

Data drift detection

ML models can become outdated over time and lose their ability to predict accurately.
This may happen due to data drift, whereby distribution of input data changes overtime
and a model trained on older data can no longer predict accurately. It is important to
be able to measure the data drift and then retrain the model as needed on the latest
data so that the model continues to predict accurately.

MySQL HeatWave AutoML provides functionality to detect data drift using a drift
detector trained during model training. Metrics such as mean and variance for the
model features are computed during model training and stored in the model catalog.
At the time of inference, a user can ask the trained detector to evaluate each sample’s
drift level. The drift value can be evaluated across all samples and features or for a
specific feature. It reveals the top three features with the highest feature drift. This
information can be used to trigger model re-training if the samples have drifted beyond
a preset threshold.

Time Series Forecasting

Time series forecasting involves using time ordered events from the past as well as
other variables to predict future values.

While analyzing time series, it’s important to exploit temporal dependency and internal
structure with elements such as seasonality, trend, and residual. There are several time
series forecasting algorithms, each best suited to a varying degree of strength of basic
time-series characteristics. The choice of the optimal algorithm usually requires a
statistician trained in time-series analysis for effective forecasting. Given the
complexity involved, an automated approach for time series forecasting is highly
desirable.

MySQL HeatWave AutoML offers a fully automated forecasting pipeline that can
automatically preprocess, select the best algorithm, and tune its hyperparameters for
a given time-series dataset, resulting in unmatched model training performance and
high forecasting accuracy.

13 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

Figure 6 : MySQL HeatWave AutoML forecasting pipeline

The MySQL HeatWave AutoML automated forecasting pipeline uses a patented
technique that consists of stages such as advanced time-series preprocessing,
algorithm selection, and hyper parameter tuning. The advanced time-series stage
prunes the search space and estimates basic time-series characteristics (seasonality,
trend etc.). These estimates are used later for the algorithm selection and
hyperparameter tuning stages. The algorithm selection stage estimates the best
algorithm for a given time-series dataset from the set of supported algorithms. The
hyperparameter tuning stage tunes the hyperparameters for the algorithm in a range
suggested by the preprocessor. This results in significant speedup by reducing the
number of trials and improves the generalization of tuned models.

Users can get predictions and can specify a confidence level at which the upper and
lower bounds of forecasted outcome can be generated.

Unsupervised Anomaly Detection

Anomaly detection is a technique for finding unusual patterns in data. It has found
applications in a wide variety of fields, including fraud detection, network intrusion
detection, detecting life-threatening medical conditions, quality control etc.

Anomaly detection is particularly challenging because of issues such as lack of labelled
data, the need for different algorithms to address various types of anomalies, and the
unbalanced nature of data given that, by definition, anomalies are rare.

MySQL HeatWave AutoML detects anomalies in unlabeled data using a novel and
patented technique called Generalized kth Nearest Neighbors (GkNN), which is based
on a single ensemble algorithm that does not require tuning of hyperparameters. It
identifies common types of anomalies such as local, global, and clustered, which
typically require separate algorithms. It provides high performance on the
Unsupervised Anomaly Detection Benchmark (UADB) datasets, outperforming some of
the most widely utilized algorithms such as k-th Nearest Neighbor (kNN) and Local
Outlier Factor (LOF). In addition to GkNN, MySQL HeatWave AutoML supports two
additional algorithms: Principal Component Analysis (PCA) and Generalized Local
Outlier Factor (GLOF), a proprietary algorithm. These algorithms provide added ability

14 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

to detect anomalies and users can provide options in the ML_TRAIN procedure to use
PCA and GLOF algorithms.

MySQL HeatWave AutoML supports anomaly detection in a fully automated way so
that the user does not need to select a specific algorithm to address a particular type of
anomaly. This drastically improves performance given that MySQL HeatWave AutoML
does not need to evaluate different types of algorithms based on the anomaly type,
unlike other approaches to anomaly detection.

None of the competing products such as Google BigQuery ML, Redshift ML or
Snowflake offers a fully automated solution for anomaly detection as MySQL HeatWave
AutoML does.

Recommender system

Recommender systems (also known as ‘recommendation systems’) are commonly
used in e-commerce to recommend new products to users based on their prior history
and preferences. The concept behind recommendation systems is finding patterns in
consumer behavior to predict users’ preferences, even before they have interacted with
the product.

The MySQL HeatWave AutoML Recommender System leverages models based on
collaborative filtering methods. These models are trained uniquely on past user-item
interactions. The recommender system supports recommendations based on both
explicit and implicit feedback.

• Explicit Feedback: If the data is composed of ratings directly provided by the
users, then it is categorized as explicit feedback. The user ratings can be
positive or negative. MySQL HeatWave AutoML uses a variety of models for
explicit feedback, including NormalPredictor, Baseline, Slopeone,
CoClustering, SVD, SVDpp, and NMF.

• Implicit Feedback: If the data contains information produced from user
behavior like clicks and purchases, this is considered implicit feedback. This
type of data is more widespread, as the user does not have to explicitly express
their taste about the item.

MySQL HeatWave AutoML supports the following types of recommendations:

• Items that the user will like

• Users who will like an item

• User ratings of an item

• Identify similar users

• Identify similar items

15 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

Track the progress of training, inference, and explanations

MySQL HeatWave AutoML progress tracking can be used to monitor the progress of
training, inference, and explanations for MySQL HeatWave AutoML. The goal of the
progress tracker is to provide visibility to the end user on the execution status of the
MySQL HeatWave AutoML operations; for example, how an operation has progressed
including which stages have been completed, any error that has occurred during the
operation, and whether the operation has been aborted.

The progress tracker can be invoked on MySQL HeatWave AutoML using SQL queries.
To initiate progress tracking, the user needs to open two MySQL client terminals. The
first terminal is used to start the machine learning query, while the second terminal is
used to monitor the progress of the operation.

Interactive Console

The interactive console for MySQL HeatWave, and MySQL HeatWave AutoML, is an
integrated environment that provides users the ability to manage the database schema
objects, run interactive queries, monitor performance, and use machine learning
capabilities such that a business analyst can easily develop applications, manage data
objects, and machine learning models. Users can train machine learning models, score,
and explain them, run predictions and “What-If2 scenarios to evaluate the impact of
feature changes on model outcomes. The console is currently available for MySQL
HeatWave on AWS.

Scenario analysis - Users can change the values of certain features of a data record and
compare the model outcome with the original values (aka baseline).

Figure 7 : What-if analysis using interactive console

Integration with interactive development tools

A user can easily connect to MySQL HeatWave from interactive notebook
environments such as Jupyter and Apache Zeppelin and run transactional, analytics,
and machine learning queries. Users can also leverage various features available for

16 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

numeric computations, data processing, data visualization and more using their
language of choice.

Figure 8: Invoke MySQL HeatWave AutoML from a notebook environment

Performance comparison

We ran benchmarks on several datasets relevant to enterprise use cases, and compared
the performance of training time, quality of models, and scalability with Redshift ML.
This was done for classification and regression datasets.

Classification comparison

The table below compares the balanced accuracy and training times of MySQL
HeatWave AutoML vs. Redshift ML. In some cases, Redshift ML was around 200x
slower than MySQL HeatWave AutoML. We used geometric mean for the comparison
to dampen the effect of these outliers. The geometric mean average indicates that
MySQL HeatWave AutoML’s training time is ~25x faster than Redshift ML and has
slightly better accuracy.

This significant improvement in performance enables users to retrain models more
frequently to improve prediction accuracy.

17 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

Figure 9: Accuracy and training time comparison

Regression comparison

The below table compares the r2 values and training times with Redshift ML. Using
the geometric mean average, the results indicate that MySQL HeatWave AutoML’s
training time is ~25x faster than Redshift ML for comparable accuracy.

Figure 10: Accuracy and training time comparison

Scalability comparison

The plot below shows the impact of adding more nodes to MySQL HeatWave AutoML
(i.e. from 1 through 16 nodes) on total training time as well as the time consumed by
key training pipeline components for the Higgs data set. There are two key takeaways
from this chart:

• The most time consuming stages of the MySQL HeatWave AutoML training
pipeline typically accelerate the most with a larger cluster.

• The total training time was reduced from 7108 seconds to 1208 seconds as
the cluster size was increased from 1 to 16 nodes.

18 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

Figure 11: Impact of larger cluster on ML pipeline

• MS – Model Selection stage selects an algorithm
• ADS – Adaptive Data Sampling stage selects an optimal number of rows for the remainder of stages
• FS – Feature Selection stage selects the relevant subset of features
• AT – Autotune stage is the hyperparameter optimization stage that tunes selected algorithm’s

hyperparameters
• FFit – Final Fit stage fits the tuned algorithm on the full dataset that includes all rows
• Gexp – Global Explainer training stage explains the model
• Overhead – end-to-end ML_TRAIN overhead time includes transfer of the dataset to cluster,

initialization, and completion time

• e2e_mltrain – end-to-end total ML_TRAIN time from MySQL client perspective.

Secondly, we compared the scalability of MySQL HeatWave AutoML with Redshift ML

Figure 12: Training speedup comparison with larger clusters

Cost comparison

For customers of MySQL HeatWave, there is no additional cost for using MySQL
HeatWave AutoML. Customers only pay for the provisioned cluster, as opposed to

19 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

other services like Redshift ML where customers are charged for the use of SageMaker
and S3 storage.

Note that for Redshift ML, we do not calculate the costs based on Redshift ML
documentation [5] under “Redshift ML pricing” section, as the actual cost incurred
during training are significantly different from the documented pricing. We calculated
the cost based on the instance shape and runtime of the SageMaker instance that was
invoked by Redshift ML.

Compared to Redshift ML, MySQL HeatWave AutoML is 97x cheaper in classification
tests and 58.7x cheaper in regression tests.

Figure 13 : Cost comparison for classification models

Figure 14 : Cost comparison for regression datasets

Conclusion

MySQL HeatWave supports OLTP, real-time analytics across data warehouse and data
lake, machine learning, and generative AI with vector store in one fully managed cloud
service—eliminating the complex, time-consuming, and expensive ETL to separate
services. Customers can leverage the synergy between GenAI and ML to derive
significant benefits, including reduced cost and improved performance and accuracy.

MySQL HeatWave AutoML, fully automates the creation of tuned ML models,
generating inferences and explanations; no need to be an expert. Benchmarks
demonstrate that, on average, MySQL HeatWave AutoML produces more accurate
results than Amazon Redshift ML, trains models up to 25X faster at 1% of the cost, and

20 Business / Technical Brief / MySQL HeatWave AutoML / Version 1.0

 Copyright © 2025, Oracle and/or its affiliates / Public

scales as more nodes are added. MySQL HeatWave AutoML is available at no additional
cost to MySQL HeatWave customers.

Resources

Learn more about MySQL HeatWave AutoML:
https://www.oracle.com/heatwave/automl/

Learn more about MySQL HeatWave: https://www.oracle.com/heatwave

Try MySQL HeatWave for free; https://www.oracle.com/heatwave/free

References

[1] Anatoly Yakovlev, Hesam Fathi Moghadam, Ali Moharrer, Jingxiao Cai, Nikan
Chavoshi, Venkatanathan Varadarajan, Sandeep R. Agrawal, Sam Idicula, Tomas
Karnagel, Sanjay Jinturkar, and Nipun Agarwal. 2020. Oracle AutoML: a fast and
predictive AutoML pipeline. <i>Proc. VLDB Endow.</i> 13, 12 (August 2020),
3166–3180. DOI:https://doi.org/10.14778/3415478.3415542

[2] https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.h
tml

[3] https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.r2_score.html

[4] https://aws.amazon.com/savingsplans/ml-pricing/
[5] https://aws.amazon.com/redshift/pricing/

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2025, Oracle and/or its affiliates. All rights reserved. This document is
provided for information purposes only, and the contents hereof are subject to change
without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied
warranties and conditions of merchantability or fitness for a particular purpose. We
specifically disclaim any liability with respect to this document, and no contractual
obligations are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without our prior written permission.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Benchmark queries are derived from TPC-H benchmark, but results are not comparable to
published TPC-H benchmark results since they do not comply with TPC-H specification.

https://www.oracle.com/heatwave/automl/
https://www.oracle.com/mysql/
https://www.oracle.com/mysql/free
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
https://aws.amazon.com/savingsplans/ml-pricing/
https://aws.amazon.com/redshift/pricing/
https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle

	Purpose statement
	Disclaimer
	Executive Summary
	Current challenges of ML in databases
	MySQL HeatWave AutoML
	Building ML models on data stored in object storage
	Synergy of built-in GenAI and ML
	Technology Background
	Security benefits
	Performance and Scalability
	Explainability

	Model management and use
	Create model
	Example:

	Load and invoke model
	Example: Load model
	Example: Unload model
	Example: Predict row
	Example: Prediction on a table
	 Example: One row input
	Example: Explain prediction on a table

	Check model quality
	Example:

	Data drift detection

	Time Series Forecasting
	Unsupervised Anomaly Detection
	Recommender system
	Track the progress of training, inference, and explanations
	Interactive Console
	Integration with interactive development tools
	Performance comparison
	Classification comparison
	Regression comparison
	Scalability comparison

	Cost comparison
	Conclusion
	Resources
	References

