ORACLE

JavaScript for MySQL HeatWave

Use JavaScript stored programs in MySQL
HeatWave

Copyright © 2025, Oracle and/or its affiliates
Public

L a, H
P B,

Purpose statement

This document provides an overview of the JavaScript for Oracle MySQL
HeatWave feature. It is intended solely to help you assess the benefits of MySQL
HeatWave JavaScript support and to plan your L.T. projects.

Disclaimer

This document in any form, software or printed matter, contains proprietary
information that is the exclusive property of Oracle. Your access to and use of this
confidential material is subject to the terms and conditions of your Oracle software
license and service agreement, which has been executed and with which you agree
to comply. This document and information contained herein may not be
disclosed, copied, reproduced or distributed to anyone outside Oracle without
prior written consent of Oracle. This document is not part of your license
agreement, nor can it be incorporated into any contractual agreement with Oracle
or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist
you in planning for the implementation and upgrade of the product features
described. It is not a commitment to deliver any material, code, or functionality,
and should not be relied upon in making purchasing decisions. The development,
release, and timing of any features or functionality described in this document
remains at the sole discretion of Oracle. Due to the nature of the product
architecture, it may not be possible to safely include all features described in this
document without risking significant destabilization of the code.

Benchmark queries are derived from the TPC-H benchmark, but results are not
comparable to published TPC-H benchmark results since they do not comply with
the TPC-H specification.

2 Business / Technical Brief / JavaScript for MySQL HeatWave oRrACLE
Copyright © 2025, Oracle and/or its affiliates / Public

_— T f;r- f:\-'
st e L

Table of contents

Purpose statement 2
Disclaimer 2
Executive Summary 4
Challenges 4
Procedural SQL Limitations 4
Development Ecosystem 4
Data Access API 4
Security 5
JavaScript for MySQL HeatWave 5
Why JavaScript 5
GraalVM 6
Graal.JS 6
Optimizations 6
Native Image 6
Virtual Machine 6
Use Case Scenario 6
Development Experience 7
Defining JavaScript Stored Programs 7
Executing JavaScript inside SQL statements 8
Executing SQL inside JavaScript code 9
Debuggability 10
Cloud Ready Architecture 10
Resource Utilization 10
Memory Resources 11
Compute Resources 11
Resource Observability 11
Security 11
Resource Restriction 11
Privileges 12
Advanced Mitigations 12
Performance 12
Native Integration 12
Graal.JS Implementation 13
Conclusion 13
Resources 13
References 14
3 Business / Technical Brief / JavaScript for MySQL HeatWave ORACLE

Copyright © 2025, Oracle and/or its affiliates / Public

Executive Summary

MySQL HeatWave is a fully managed cloud database service, powered by the built-in
MySQL HeatWave in-memory query accelerator. It’s available on OCI, AWS, Azure, and
in customers’ data centers with OCI Dedicated Region. MySQL HeatWave delivers the
best performance and price-performance in the industry for data warehousing.

MySQL HeatWave now includes a rich procedural programming capability directly
inside the database, further enabling the user to cut down on data movement costs in
favor of server-side solutions. “JavaScript for MySQL HeatWave” is a new feature
available exclusively in MySQL HeatWave. It allows users to write JavaScript stored
functions and procedures in the server, that are executed via GraalVM. The JavaScript
functions and procedures can manipulate existing MySQL data irrespective of the
underlying storage engine, i.e., InnoDB or MySQL HeatWave; all work transparently.

Users can now re-organize applications and move the data-intensive complex
operations closer to their data, this reduces the cloud egress cost and the effort required
to maintain data pipelines. In addition, it improves end-to-end application performance
and security by eliminating the need for client-server data movement.

Challenges

Even with rich transaction processing, analytics, and machine learning inside the
database, complex and rapidly evolving data-intensive applications still force the user
to move large amounts of data into the client side of applications. This is done to access
the rich procedural programming language eco-system not available inside the
database. Enabling the same capability in the database has some practical challenges:

Procedural SQL Limitations

MySQL allows stored programs in SQL procedural-dialect “Compound Statements” [4].
This enables users to deploy server-side programs but comes with limitations. SQL
stored programs are interpreted and do not take advantage of compiler optimizations.
Furthermore, the SQL dialects lack basic features compared to modern language
runtimes, such as user-defined types, containers (arrays, maps), and functional
programming constructs. This makes it hard for users to implement complex logic.

Development Ecosystem

Only allowing procedural language runtime inside the database is not sufficient, the
challenge is to give developers the freedom to use the development ecosystem that
comes with the language runtime. The development ecosystem may include tools such
as 3" party package managers, debuggers, editors, testing frameworks, etc...

Data Access API

Accessing and manipulating database data is central to procedural language
integration. Introducing a new data access API to the developer community introduces
a steep learning curve and hinders adoption. Reusing interfaces such as existing

4 Business / Technical Brief / JavaScript for MySQL HeatWave oRrACLE
Copyright © 2025, Oracle and/or its affiliates / Public

https://www.oracle.com/mysql/heatwave/performance/
https://www.oracle.com/mysql/heatwave/performance/

< \-..— o N oS e £ ~ . - " 3 ~ = - . o

database client-server connectors and ORMs does not directly map to the needs of
server-centric data processing.

Security

Adding a new execution engine in the database server means expanding the attack
surface for the database against new vulnerabilities. It also means preventing
unnecessary access to valuable compute and memory resources by the procedural
code that would have been otherwise used by the database.

JavaScript for MySQL HeatWave

To address the challenges discussed above, we've introduced support for JavaScript
stored programs in MySQL HeatWave. Users can now express rich procedural logic
inside the database and access their MySQL datasets seamlessly without incurring ETL
costs. The JavaScript runtime is integrated via GraalVM, where the user can use all the
GraalVM’s Enterprise Edition (EE) features such as compiler optimizations,
performance, and security features at no additional cost.

In the initial release the feature supports

e JavaScript language based on ECMAScript 2023

¢ MySQL data types such as all variations of integers, floating point, temporal
and VARCHAR, CHAR types with full utf8mb4 support

e Data access APl based on MySQL Shell JavaScript XDevAPI

& —)
SQL Accelerator
E©
) =
2 | &8
OLAP = 0 JS MySQL p
Applications 3 B GraalVM J5 InnoDB ' l\ HeatWave
- JavaScript Engine P
© Execution ol0
— e g8
ML Accelerator
< =

Why JavaScript

JavaScript is one of the most popular programming languages [1]. As of 2023, more
than 98% of all the websites use JavaScript [5]. Apart from support in all major web
browsers, JavaScript is widely used in server-side runtime such as Node.js[7] and
Deno[8]. The language has a collection of over a million reusable 3™ party packages in
“npm” alone, the package manager is used by tens of millions of developers [6].

With JavaScript, developers can take advantage of the weakly-typed procedural
language inside the server. The JavaScript built-in library includes many commonly
used operations and data structures that make implementation easy and expressive.

5 Business / Technical Brief / JavaScript for MySQL HeatWave oRrACLE
Copyright © 2025, Oracle and/or its affiliates / Public

st e L

Developers can also reuse available 3™ party libraries without reimplementing
everything from scratch.

GraalVM

The feature uses the Enterprise edition of GraalVM [2]. GraalVM is an Oracle compiler
ecosystem that includes JDK, language implementation such as JavaScript, R, Python,
Ruby, and Java. It includes just-in-time (JIT) and ahead-of-time (AOT) compilation
technology. It also provides a fully managed virtual machine with sandboxing capability
and tooling support. More details below:

Graal.JS

GraalVM has its own JavaScript implementation based on the ECMAScript 2023
standard. The language implementation is competitive in terms of performance [9]
even though it is implemented using GraalVM'’s Polyglot framework, which focuses on
extending language support in the same VM.

Optimizations
GraalVM comes with its own state-of-the-art compiler optimizations, including

aggressive inlining and partial escape analysis. It also provides a profile guided just-in-
time (JIT) compiler that switches between interpreter and native compilation at runtime.

Native Image

GraalVM introduces ahead-of-time (AOT) where the language implementation such as
JavaScript is compiled down into a native binary representation for fast processing.

Virtual Machine

The ecosystem comes with a fully memory managed VM with garbage collector and
includes security features such as memory isolation and sandboxing. The virtual
machine comes with development tools such as a live debugger.

Use Case Scenario

Let’s take an example where the user has a JavaScript application that sanitizes inputs
and stores them inside the database. The sanitization and validation implementation
would be dependent on the client application capability, such as which language it's
written in, which sanitization package is being used, and with what version. Having
multiple clients on different platforms is a common use case where data is being fed
into a central back-end database server. Such a solution can lead to discrepancies in
data quality in the database server.

Performing the data cleaning in the database server would be an ideal central location.
However, simple validation rules are hard to implement as they require international
standardization knowledge, and the problem becomes much worse if the
implementation needs to be done in a SQL dialect-based stored program. For example,
if the requirement is to verify if the given string is a valid email address, social security
number, ISSN, URL, mobile number, and postal code to name a few.

6 Business / Technical Brief / JavaScript for MySQL HeatWave oRrACLE
Copyright © 2025, Oracle and/or its affiliates / Public

\i};fj

This is where procedural languages such as JavaScript become very useful. Not only do
they make the development easy, but the user can easily reuse already available
packages that specialize in making sure that such validation is based on standards.

Development Experience

Traditionally, database systems have their own procedural programming languages for
stored programs. These languages are unfamiliar to most developers, and they often
suffer from the lack of third-party libraries and poor support from development tools.
Different language dialects also make it difficult to port routines between database
systems. Compared to modern programming languages, program execution is also
slower since it is based on interpreted code.

Defining JavaScript Stored Programs

To overcome the challenges discussed above, we are introducing support for JavaScript
stored programs. To define a JavaScript stored program in MySQL, we use the same
SQL statements as for traditional stored functions and procedures:

CREATE FUNCTION construct_url (path VARCHAR(50),
search VARCHAR(20)) RETURNS VARCHAR(100)

As $%
let url = ~“${path}

${search && !search.startsWith('?') ? "?' : "'}
${search ?? ''}";
return encodeURI(url);

$$

Note that a LANGUAGE clause is used to specify the language of the stored function.
(Valid languages are SQL and JAVASCRIPT). The JavaScript code is specified in a new
AS clause as an ordinary character string enclosed in quotes.

CREATE FUNCTION construct_url (path VARCHAR(50),
search VARCHAR(20)) RETURNS VARCHAR(100)
LANGUAGE JAVASCRIPT AS

let url = ~${path}

${search && !search.startsWith('?') ? '?' : ''}
${search ?? "'} ;
return encodeURI(url);

Since the JavaScript code may itself contain single and double quotes, we are
introducing a new quoting mechanism, called dollar quotes, that can be used to avoid
conflicts. A dollar-quote is a character sequence consisting of a dollar sign ($), an
optional “tag” of zero or more characters, and another dollar sign. Above is an example
of a function that uses a regular expression to check if a prefix of the string argument
matches a suffix of the same string.

7 Business / Technical Brief / JavaScript for MySQL HeatWave ORACLE
Copyright © 2025, Oracle and/or its affiliates / Public

As seen from the above examples, the JavaScript code is embedded directly in the
definition of the SQL-callable function. The names of the arguments can be referred
directly in the JavaScript code, and when the function is called, there will be an implicit
type conversion between SQL types and JavaScript types.

Executing JavaScript inside SQL statements

A JavaScript function may be called from SQL statements anywhere a traditional SQL
function may be called; in SELECT expressions, WHERE, GROUP BY, and ORDER BY
clauses, DMLs, DDLs, Views etc... Here is an example of an SQL statement that calls the
string similarity function for each row of the table to find the Top-K most similar strings
for a given reference string.

CREATE FUNCTION string_similarity(
s1 VARCHAR(255), s2 VARCHAR(255)) RETURNS INT
LANGUAGE JAVASCRIPT AS $$%
const [strl, str2, lenl, len2] =
sl.length < s2.length ?
[[...s2], [...s1], s2.length, sl.length] :
[[...s1], [...s2], sl.length, s2.length];
var res = [...Array(lenl + 1)].map(x =>
[...Array(len2 + 1).keys()]
)s
strl.forEach((c,i) => {
res[i+l1][0] = i+1;
str2.forEach((d,j) => {
res[i+1][j+1] = Math.min(
res[i][j+1] + 1,
res[i+1][j] + 1,
res[i][j] + ((c ==d) 2 @ : 1)
)
})
})
return res[lenl][len2];

$$

string_similarity (my_col, "reference string")
my_table
string_similarity (my_col, "reference string")

To call JavaScript stored procedures, the CALL statement should be used. Both input
and output parameters are supported for stored procedures. More on stored
procedures below.

8 Business / Technical Brief / JavaScript for MySQL HeatWave ORACLE
Copyright © 2025, Oracle and/or its affiliates / Public

*ifgfj

Executing SQL inside JavaScript code

Executing JavaScript stored functions inside SQL statements is one way to interact with
MySQL data. The feature also provides an interface to issue SQL queries inside
JavaScript, which is particularly useful for JavaScript stored procedures that cannot be
invoked inside SELECT, DMLs, and DDL statements.

Both simple SQL statements and prepared statements are supported with full
parameter binding support. In the example below we demonstrate using a simple
SELECT query that iterates over constructed URLs built via the stored function in the
prior example. The constructed URLs are then inserted into a table using prepared
statement.

CREATE PROCEDURE store_urls (OUT url_inserted INT)
LANGUAGE JAVASCRIPT AS $%

selectQuery = Q).
construct_url

")

insertQuery = OR

)

url_inserted = 0;
result = selectQuery. (), row = null;
(row = result.) {
insertQuery. (row[0]). OF
url_inserted++;

}
$$

As for traditional SQL stored procedures, there are two modes for users to consume
query results. First, as shown above, users can use a cursor mode where the query result
can be iterated in JavaScript. The second option is a cursor-less mode where the query
result set is returned directly to the caller. Furthermore, JavaScript stored procedures
enable cursors with prepared statements, which is not possible currently with traditional
SQL stored procedures.

The data access APl used is the MySQL JavaScript XDevAPI already available in the
Node.js MySQL connector and MySQL shell. The API ensures that the data type
conversion is seamless both for query result set and bind parameters. It fully supports
transactions, session variables, access to diagnostic information such as errors and
warnings and result set metadata.

9 Business / Technical Brief / JavaScript for MySQL HeatWave ORACLE
Copyright © 2025, Oracle and/or its affiliates / Public

% 'k. = A " 8 " ! v y . ¥ - . % “ / .. ., - i

Debuggability

The “JavaScript for MySQL HeatWave” feature focuses on the development experience,
it provides tools to help users debug their code. The global console JavaScript object
offers several methods that will write to either a standard 10 stream or an error 10
stream. The feature introduces new SQL interfaces (UDFs) to enable developers to
access the standard output and error streams. For example:

SELECT mle_session_state(“stdout”);

Similarly, in case of runtime errors, the user might want to access the full stack trace in
addition to the error message to troubleshoot the issue. Such information is also
exposed via the same UDF interface. i.e.,

SELECT mle_session_state(“stack_trace”);

Cloud Ready Architecture

The new execution engine (GraalVM) is integrated inside the database server natively.
The feature is designed from the ground-up with the cloud service as the primary focus.
This provides smooth interaction with existing cloud features:

Compatibility: The feature is fully compatible with various server components such as
enterprise thread pool, audit, and replication variations etc... Existing clients and
connectors work seamlessly.

Storage engine: The feature is agnostic to storage engine, data can be accessed
transparently from InnoDB, MySQL HeatWave, etc...

Interoperability: JavaScript stored programs work with traditional SQL stored
programs. Interactions with features based on SQL stored programs, for example
MySQL HeatWave Autopilot and MySQL HeatWave AutoML, is seamless.

(

é GraalVM %

Managed Heap

JavaScript
Execution Engine

SQL
Execution Type Conversion

Engine
SQL Query
m == Execution
b 4
| optimizer | f
— senglans
InnoDB

Storage
Engine

<)

Isolated region

Language Runtime

JIT Compiler
J S Sandboxing

9 91 RIY B

10 Business / Technical Brief / JavaScript for MySQL HeatWave oRrACLE
Copyright © 2025, Oracle and/or its affiliates / Public

st Pt

Resource Utilization

The feature is designed to be sensitive to resource utilization. More specifically, it uses
resources effectively and hence has zero memory and compute impact on the server
until a JavaScript stored program is invoked.

Memory Resources

The size of the GraalVM heap is automatically configured based on the size of the cloud
instance. A larger heap comes with a larger shape provisioned. Moreover, the VM is
fully managed and uses garbage collection to keep the peak memory footprint within
configured limit. GraalVM also allows code sharing so that multiple stored programs
instances do not occupy more space in the VM heap.

Compute Resources

JavaScript execution uses the same physical threads managed by the MySQL
Enterprise Thread Pool (ETP). ETP allows for queuing the user operations and reusing
a limited number of threads. Therefore, the JavaScript execution engine scales with the
ETP configured limits for the cloud instance. Stored programs are also cached and
reused in later re-execution for faster runtimes. Later executions will also be able to take
advantage of any JIT compilation that may have been applied to the code by earlier
executions. Hence, the more times the same code snippet is executed, the more
efficient the execution will be.

Resource Observability

Users can monitor the feature state and resource utilization using MySQL status
variables. ‘'mle_heap_usage’ provides the percentage of VM memory allocated while
‘mle_heap_status’ allows the user to know if the VM is currently busy in garbage
collection. In addition, the SQL interface metrics are also integrated with cloud
monitoring tools.

Security

The “JavaScript for MySQL HeatWave” feature is part of the cloud offering and as such
offers the highest levels of security, isolation, and data protection. As discussed below,
“JavaScript for MySQL HeatWave” relies on the industry-proven Oracle’s GraalVM
security guarantees.

Resource Restriction

Using a custom-built VM with MySQL enables fine-grained control over the sandboxing
policy to restrict access from the VM and JavaScript user code.

Memory Isolation: The VM ensures that no memory beyond what'’s allocated will be
used — malicious code cannot compromise other modules of the MySQL server. Every
stored program is parsed and executed in its own context. This isolation policy does not
allow for one stored program to read or modify other stored programs’ data or code.

Compute Restrictions: Spawning or manipulating threads from JavaScript user code
is restricted. Furthermore, access to ‘evaluate’ dynamic JavaScript source is restricted.

11 Business / Technical Brief / JavaScript for MySQL HeatWave oRrACLE
Copyright © 2025, Oracle and/or its affiliates / Public

st e L

Since no new threads can be created in JavaScript code, the sandboxing ensures that
malicious code cannot slow down the server excessively.

Network Restriction: The JavaScript user code has no access to sockets or network
communication.

File System Restrictions: The VM has no file system footprint, and the JavaScript user
code is not allowed to use the persistent storage directly.

Privileges

The feature builds on the standard MySQL privileges model. Only privileged users are
allowed to create stored programs. The access to the SP can be controlled by other
privileges. One user may define the stored programs that can be executed by others,
and the proper user privileges will be applied for SQL execution inside stored
procedures.

Advanced Mitigations

In addition to the above, the VM is configured to counter advanced security attacks such
as JIT spraying attacks by using constant blinding and by using speculative
optimization barriers preventing side-channel attacks such as Spectre and Meltdown.

Performance

Apart from reducing client-server data transfer latency, the integration support for
JavaScript comes with additional performance benefits.

Native Integration

The JavaScript integration inside MySQL is done using a custom-built VM based on
GraalVM's ahead-of-time (AOT) compilation technology. This allows the VM to be finely
tuned to the MySQL requirements and cloud shape. The VM built includes custom
memory management routines such as garbage collector and the Graal JIT compiler.
The VM is natively integrated inside the database process, which avoids any inter-
process communication and serialization overheads. The VM is tightly integrated with
the Enterprise thread pool where thread management and observability are executed
by the database server. With this native integration, we achieve JavaScript execution
without causing overhead on background OLTP tasks. Below we can see that the
background OLTP is not impacted by JavaScript execution even though the underlying
VM uses background tasks such as JIT compilation and garbage collection.

12 Business / Technical Brief / JavaScript for MySQL HeatWave oRrACLE
Copyright © 2025, Oracle and/or its affiliates / Public

Foreground: Background OLTP:
JavaScript SysBench 16 threads
functions
90000 1 ‘
80000
* . [& . D .
70000
s < c 3
S S S S
! < =
60000 8 S é k<] 5 E s s
z : E s] g 5 %
& 2 = 2 2 = 2 2 H
5 50000 £ [rd 3 £ = £ o
; f = g
£ = H = B - =
3 40000 a S = S 2]
g o & i 2 & b1 2]
£ o 3] 3 =] =
30000 a g 3 2 4 @ g
= = = £
20000 inf
10000
0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800

Time (secs)

Graal.JS Implementation

The Graal compiler itself uses state-of-the-art optimizations such as aggressive inlining
and partial escape analysis. On top of these optimizations, the VM uses profile guided
JIT compilation where frequently executed JavaScript code will be compiled into native
code to accelerate execution on the GraalVM. The resulting Graal JavaScript engine has
comparable performance to the v8 JavaScript engine.

Conclusion

With the inclusion of the “JavaScript for MySQL HeatWave” feature, developers can now
express complex programming logic directly inside the MySQL server. This allows
developers to push data-intensive parts of their applications close to their data,
reducing data movement. The use of JavaScript based on ECMAScript 2023 prevents
vendor lock-in issues, while the user enjoys all the benefits of GraalVM Enterprise
Edition at no additional cost. Furthermore, the feature integrates seamlessly with the
MySQL HeatWave cloud service where the latest innovations are available to
developers.

Resources

Learn more about MySQL HeatWave: https://www.oracle.com/mysql/

Learn more about GraalVM: https://www.oracle.com/java/graalvm/

Try MySQL HeatWave for free; https://www.oracle.com/mysal/free

ORACLE

13 Business / Technical Brief / JavaScript for MySQL HeatWave
Copyright © 2025, Oracle and/or its affiliates / Public

https://www.oracle.com/mysql/
https://www.oracle.com/java/graalvm/
https://www.oracle.com/mysql/free

References

[1] https://survey.stackoverflow.co/2023 /#section-most-popular-technologies-

programming-scripting-and-markup-languages

[2] https://www.graalvm.org/

[3] https://tc39.es/ecma262/2023/

[4] https://dev.mysgl.com/doc/refman/8.0/en/sql-compound-statements.html

[5] https://w3techs.com/technologies/details/cp-javascript

[6] https://www.npmjs.com/

[7] https://nodejs.org/en

[8] https://deno.com/

[9] https://www.graalvm.org/javascript/

Connect with us

Call +1.800.0RACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

B blogs.oracle.com ﬁ facebook.com/oracle

ﬂ twitter.com/oracle

Copyright © 2025, Oracle and/or its affiliates. All rights reserved. This document is
provided for information purposes only, and the contents hereof are subject to change
without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied
warranties and conditions of merchantability or fitness for a particular purpose. We
specifically disclaim any liability with respect to this document, and no contractual
obligations are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without our prior written permission.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Benchmark queries are derived from TPC-H benchmark, but results are not comparable to
published TPC-H benchmark results since they do not comply with TPC-H specification.

14 Business / Technical Brief / JavaScript for MySQL HeatWave
Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

https://survey.stackoverflow.co/2023/#section-most-popular-technologies-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-programming-scripting-and-markup-languages
https://www.graalvm.org/
https://tc39.es/ecma262/2023/
https://dev.mysql.com/doc/refman/8.0/en/sql-compound-statements.html
https://w3techs.com/technologies/details/cp-javascript
https://www.npmjs.com/
https://nodejs.org/en
https://deno.com/
https://www.graalvm.org/javascript/
https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle

	Purpose statement
	Disclaimer
	Executive Summary
	Challenges
	Procedural SQL Limitations
	Development Ecosystem
	Data Access API
	Security

	JavaScript for MySQL HeatWave
	/
	Why JavaScript

	GraalVM
	Graal.JS
	Optimizations
	Native Image
	Virtual Machine

	Use Case Scenario
	Development Experience
	Defining JavaScript Stored Programs
	Executing JavaScript inside SQL statements
	Executing SQL inside JavaScript code
	Debuggability

	Cloud Ready Architecture
	/
	Resource Utilization
	Memory Resources
	Compute Resources
	Resource Observability

	Security
	Resource Restriction
	Privileges
	Advanced Mitigations

	Performance
	Native Integration
	Graal.JS Implementation

	Conclusion
	Resources
	References

