ORACLE

Continuous Availability

Application Continuity for the Oracle Database

Version [1.0]
Copyright © 2025, Oracle and/or its affiliates

Public

ORACLE

Purpose statement

This document provides an overview of features and enhancements included Oracle Application Continuity. It is
intended solely to help you assess the business benefits of Oracle Application Continuity and planning for the
implementation and configuration of the product features described.

Disclaimer

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of
your Oracle software license and service agreement, which has been executed and with which you agree to
comply. This document and information contained herein may not be disclosed, copied, reproduced or
distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your
license agreement, nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or
affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the
implementation and upgrade of the product features described. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing decisions. The development, release,
timing, and pricing of any features or functionality described in this document remains at the sole discretion of
Oracle. Due to the nature of the product architecture, it may not be possible to safely include all features
described in this document without risking significant destabilization of the code.

2 Continuous Availability / Version [1.0]

Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

Table of contents

Introduction 4

Feature set for keeping your Applications continuously available

Building Blocks for Continuous Availability of Your Application 7
Maintenance without impacting your Applications 11
Transparent Application Continuity 14
Application Continuity Coverage 16
TRANSPARENT APPLICATION FAILOVER 17
Steps for using Transparent Application Failover 17
KNOWING YOUR PROTECTION LEVEL WHEN USING TACOR AC 18
CONFIGURING YOUR CLIENTS 19
JDBC-thin Driver Checklist 19
CONCLUSION 20
APPENDIX: CONFIGURING YOUR SERVICES 21
APPENDIX: USING ACCHK TO CHECK FOR CONCRETE CLASSES 22
APPENDIX: USING ACCHK FOR APPLICATION CONTINUITY
COVERAGE 23
APPENDIX: SQL TO REPORT PROTECTION BY PDB, SERVICE AND
HISTORY 25
ADDITIONAL TECHNICAL BRIEFS 26

3 Continuous Availability / Version [1.0]

Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

Introduction

Applications achieve continuous service when planned maintenance, unplanned outages and load
imbalances of the database tier are hidden. A combination of application best practices, simple
configuration changes, and an Oracle Database deployed using MAA best practices ensure that
your applications are continuously available.

The following checklist is useful for preparing your applications and databases, even if you are not
yet using Application Continuity. The points discussed here provide significant value for preparing
your systems to support continuous availability, reducing possible downtime during planned

maintenance activities and during unplanned outages should they occur.

4 Continuous Availability / Version [1.0]

Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

Feature set for keeping your Applications continuously available

Applications achieve continuous availability when planned maintenance, unplanned outages, and load
imbalances of the database tier are hidden. Oracle provides a set of features that you can choose from to keep
your application available during planned events, unplanned outages and load imbalances. You can think of these
features as an insurance policy protecting your applications from service interruptions. The best features are
those that are fully transparent to your application so your application developers can focus on building
functionality, not infrastructure, and that continue to protect the application when it changes in the future. We call
this futureproofing.

Start with the feature set:

Draining and Rebalancing Sessions for Planned Maintenance

When planned maintenance starts, sessions that need to be drained from an instance, PDB, or database are
marked to be drained, idle sessions are released gradually. Active sessions are drained when the work executing
in that session completes. Draining of sessions is in wide use with Oracle connection pools and mid-tiers
configured for Fast Application Notification (FAN). Starting with Oracle Database 18c, the database drains
sessions when PDBs and instances are stopped or relocated. Draining is always the best solution for hiding
planned maintenance. Failover solutions such as Application Continuity are the fallback when work will not drain
in the time allocated.

Transparent Application Failover (TAF)

TAF is a feature dating back to Oracle8i. Following an instance failure, TAF creates a new session and, when using
SELECT mode, on demand, replays queries back to where they were before the failure occurred. Starting with
Oracle Database 12.2, TAF offers FAILOVER_RESTORE, matching Application Continuity, to restore the initial
session state before queries are replayed. Cursors are replayed using the state re-established initially.
Applications using TAF must not change session state later in the session, (for example PLSQL, temp tables, temp
lobs, sys context) as this session state is not restored.

Application Continuity (AC)

Application Continuity hides outages starting with Oracle Database 12.1 for thin Java-based applications and
Oracle Database 12.2.0.1 for OCl and ODP.NET based applications. Application Continuity rebuilds the session by
recovering the session from a known point which includes session and transactional states. Application Continuity
rebuilds all in-flight work. The application continues as it was, with a slightly delayed execution time when a
failover occurs. The standard mode for Application Continuity is for OLTP-style pooled applications.

Transparent Application Continuity (TAC)

Starting with Oracle Database18c, Transparent Application Continuity (TAC) transparently tracks and records
session and transactional state so the database session can be recovered following recoverable outages. This is
done without relying on application knowledge or code changes, allowing Transparent Application Continuity to
be enabled for your applications. Application transparency and failover are achieved by consuming the state-
tracking information that captures and categorizes the session state usage as the application issues user calls.

5 Continuous Availability / Version [1.0]

Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

Which Solution Should | use?

TAC AC TAF Draining
Don’t know how the application is Yes No No Yes
implemented
Application does transactions Yes Yes No for Unplanned Yes
Transactional
Disconnect Only
Application uses Oracle State (temp Yes Yes No Yes
lobs, PL/SQL, temp tables) No for static
use
Application does not use connection Yes No Yes Yes
pools
Application has side effects (file Yes Customizable | No Yes
transfers) Side effects are
not replayed
Application needs initial state restored | Yes, and Yes, and Yes and Yes
Customizable Customizable | Customizable
Future Proofed for Application Yes No No Yes
Changes

Instructions for Application Configuration

Transparent Application Continuity with Draining is the recommended solution for Continuous Availability. If you
are using a 12c driver, or customization is required for initial states or side effects, then you should use
Application Continuity. TAF continues to be available and is fully supported.

Follow these instructions when implementing your solution.

1. Use an Oracle Clusterware managed service that is not the default database service (the default service
has the same name as the database or PDB). The services that you create provide location transparency
and HA features.

2. Use the recommended Connection String (explained later in this paper) with built in timeouts, retries and
delay so incoming connections do not see errors during outages.

3. Fast Application Notification (FAN) is a mandatory component to initiate draining, break out of failures,
and rebalance sessions when services resume and load imbalances occur. For outages such as node and
network failures, fast failover of the application does not happen if the client is not interrupted by FAN.
FAN applies to all failover solutions. When configuring FAN, use Auto-configuration of ONS. Use the
recommended TNS format strictly. Do not alter this format. (Exception: if your client is pre-12c, you will
manually configure FAN.)

4. Before maintenance starts, drain your work from the instances or nodes targeted for maintenance.
Enable FAN with Oracle Connection Pools or Connection tests (or both). Oracle connection pools with
FAN are the best solution, as pools provide a full life cycle of session movement. That is, draining and
rebalancing of work as maintenance progresses. When using FAN, return your connections to the pool. If
you are using server draining (the alternate plan is explained later in this paper) and your test is not a
standard test, add your test to the server using DBMS_APP_CONT_ADMIN. Sessions that do not drain
within the DRAIN_TIMEOUT will be failed over.

5. The standard solution for failing over sessions is Transparent Application Continuity (TAC). Use
Application Continuity (AC) if you are using Oracle Database 12c Release 2, or you want to customize with
side effects or call-backs or have an application that uses state such as temporary tables and never cleans
up. Use Transparent Application Failover (TAF) if your application is read-only and does not change the
Oracle session state in the session after the initial setup.

6 Continuous Availability / Version [1.0]

Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

Building Blocks for Continuous Availability of Your
Application

Use Services

A service is a logical abstraction for managing work. It allows applications to benefit from the reliability of the
redundant parts of the MAA system. The services hide the complexity of the underlying system from the client by
providing a single system image for managing work.

The service is -

- Aunit for management: a handful of services are manageable, but nodes, instances, listeners, and
network interfaces are not manageable. The service provides location transparency for sites and
databases.

« Aunit for availability: resources are recovered quickly, independently, and in parallel for each service
without the need to start entire software stacks; and

- aunit for performance: work is routed transparently across the MAA system according to service quality
and priority. Services are measured against service level thresholds and violations are reported to
management with advised solutions in AWR.

FAN, connection identifier, TAC, AC, switchover, consumer groups, and many other features and operations are
predicated on the use of services. Do not use the default database service as this cannot be disabled, relocated, or
restricted and so has no high availability support. The services you use are associated with a specific primary or
standby role in a Data Guard environment. Do not use the initialization parameter service_names for application
usage.

An Example of Services:

From ATP-D, each PDB database is supplied with five pre-configured services to choose from. All provide FAN
and draining.

Service Name Description Draining \ FAN TAC
TPURGENT OLTP Highest Priority Yes Yes Yes
TP OLTP General Priority Yes Yes Yes
Recommended to be used as main service
HIGH Reporting or Batch Yes Yes
Highest Priority
MEDIUM Reporting or Batch Yes Yes
Medium Priority
Low Reporting or Batch Yes Yes
Lowest Priority

Configure the Connection String or URL for High Availability

All Oracle-supplied connect strings will conform to the following recommendations. There is no need to do
anything if you use the Oracle-supplied wallet. The following TNS/URL configuration is recommended for use
when connecting at failover, switchover, fallback and basic startup.

Set RETRY_COUNT, RETRY_DELAY, CONNECT_TIMEOUT and TRANSPORT_CONNECT_TIMEOUT parameters in
the tnsnames.ora file or the URL to allow connection requests to wait for the service and connect successfully.
Connection attempts and retries are managed by Oracle Database Net Services.

Set CONNECT_TIMEOUT to a high value to prevent login storms such as 90s or 120s. Low values can result in
frenzied login attempts due to the application or pool cancelling and retrying connection attempts.

Do not set (RETRY_COUNT+1)*RETRY_DELAY or CONNECT_TIMEQUT larger than your response time SLA. The
application should either connect or receive an error within the response time SLA.

7 Continuous Availability / Version [1.0]

Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

These are general recommendations for configuring the connections for high availability. Do not use Easy
Connect Naming on the client as EZCONNECT has no high availability capabilities.

Note that the standby-scan specified below refers to the SCAN address available on the STANDBY site specified in
your (Active) Data Guard configuration. Attempt will be made to connect to the PRIMARY site first, and if the
service is not available, attempt to connect to this service at the standby. Once the location of the service is
known, Oracle drivers 12.2 and later remember the address_list with that service offered and chooses this first,
until the service next moves.

Adding the standby-scan to TNS connection descriptor to transparently fail over to the standby-scan is optional.
Failing over to a standby database within the same region will have acceptable performance in most cases versus
failing over to a standby database in a different region where additional network latency may result in
unacceptable response time performance. In the latter case, a site failover operation will be required which
involves DNS failover to another region containing mid-tier resources and standby database.

Use this Connection String for ALL Oracle driver version 12.2 or higher:

Alias (or URL)

(DESCRIPTION
(CONNECT_TIMEOUT= 9@) (RETRY_COUNT=58) (RETRY_DELAY=3) (TRANSPORT_CONNECT_TIMEOUT=3)
(ADDRESS_LIST =
(LOAD_BALANCE=on)

(ADDRESS = (PROTOCOL

TCP) (HOST=primary-scan) (PORT=1521)))
(ADDRESS_LIST =

(LOAD_BALANCE=on)

(ADDRESS = (PROTOCOL = TCP)(HOST=standby-scan)(PORT=1521)))

(CONNECT_DATA=(SERVICE_NAME = YOUR SERVICE)))

For JDBC connections in 12.1 or earlier the following should be used. This Connection String uses a lower
CONNECT_TIMEOUT because TRANSPORT_CONNECT_TIMEQUT is not available for thin Java drivers until Oracle
Database 12.2. RETRY_DELAY requires a patch for 11.2.0.4 clients.

Alias (or URL)

(DESCRIPTION

(CONNECT_TIMEOUT= 15)(RETRY_COUNT=50) (RETRY_DELAY=3)
(ADDRESS_LIST =
(LOAD_BALANCE=0n)
(ADDRESS = (PROTOCOL = TCP)(HOST=primary-scan)(PORT=1521)))
(ADDRESS_LIST =
(LOAD_BALANCE=0n)
(ADDRESS = (PROTOCOL = TCP)(HOST=standby-scan)(PORT=1521)))

(CONNECT_DATA=(SERVICE_NAME = YOUR SERVICE)))

8 Continuous Availability / Version [1.0]

Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

Fast Application Notification (FAN)

FAN must be used. FAN is a required component for interrupting the application to failover. Without FAN,
applications can hang on TCP/IP timeout following hardware and network failures, and omit to rebalance when
resources resume. All Oracle pools and all Oracle application servers use FAN. Third-party JAVA application
servers can use UCP to enable FAN. No application changes are required to use FAN. These are configuration
changes only.

For continuous service during planned maintenance, use FAN with:

« Oracle pools or
« UCP with third-party JDBC application servers or
« Thelatest Oracle client drivers

For continuous service during unplanned outages, use FAN with

« Application Continuity or
- Transparent Application Continuity

The format of the ADDRESS_LIST described above is important for several reasons, one being that this format
allows for auto-configuration of ONS. ONS is used to propagate FAN events to mid-tier pools and clients. When a
database connection is made, database-tier ONS information is sent back to the mid-tier, allowing the mid-tier to
establish ONS communication paths automatically. This means that configuration can be dynamic and need not
be maintained at the mid-tier. ONS connections will be made from both the primary and standby sites.

FAN Coverage

FAN events are integrated with:

« Oracle Fusion Middleware and Oracle WebLogic Server

« Oracle Data Guard Broker

« Oracle JDBC Universal Connection Pool or Driver for both JDBC thin and OCl interfaces
« ODP.NET Connection Pool for Unmanaged and Managed Providers

« Oracle Tuxedo

« SQL*Plus

.« PHP

- Global Data Services

- Third-party JDBC application servers using Oracle JDBC Universal Connection Pool

- Listeners

To enable FAN in the client:

Use the TNS alias or URL shown in the preceding discussion. This connection string is used to auto-configure the
Oracle Notification Service (ONS) subscription at the client for FAN-event receipt when using an Oracle Database
12c or later client driver. For older drivers, refer to the FAN white paper in the Appendix for configuration details.
ONS provides a secure communication path between the database tier and the client tier, allowing the client to be
notified of service availability (components stopping or starting) as well as runtime load balancing advice for
better work placement during normal operation.

1. Use the TNS alias or URL provided. This connect string will auto-configure ONS (auto-ONS) subscription
at the client for FAN event receipt when using a 12c driver or later. For older drivers, refer to the FAN
white paper.

2. Depending on the client, enable FAN in the application configuration properties as follows.

e Universal Connection Pool or JDBC thin driver (starting 12.2)
Set the property FastConnectionFailoverEnabled

9 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

e Weblogic Active GridLink for Oracle RAC
FAN and Fast Connection Failover are enabled by default

e Oracle WebLogic Server, IBM WebSphere, IBM Liberty, Apache Tomcat, Red Hat WildFly (JBoss),
JDBC Applications
Use Universal Connection Pool as a connection pool replacement

e ODP.Net clients (Managed and Unmanaged Providers)
Set “HA events = true;pooling=true” in the connect string if using ODP.Net 12.1 or earlier.

e Oracle Call Interface (OCI) clients and OCl-based drivers
Oracle Call Interface (OClI) clients without native settings can use oraacces.xml and set events to
true

Python, Node.js and PHP have native options. In Python and Node.js you can set an events mode
when creating a connection pool. In PHP, edit php.ini add the entry oci8.events=on

SQL*Plus enables FAN by default

3. You can configure ONS to use TLS (wallet-based) authentication.
For JDBC applications:
a) Ensure the following JAR files are present in your application’s CLASSPATH :
(ons.jar,0sdt_cert.jar,0sdt_core.jar,oraclepki.jar). The Oracle ATP-D service always uses TLS.
Set declaratively using an UCP XML configuration file:

<?xml version="1.0"?>

<ucp-properties>

<connection-pool

connection-pool-name="UCP_pooll"

user="dbuser"

password="dbuserpasswd"
connection-factory-class-name="oracle.jdbc.pool.OracleDataSource"
initial-pool-size="10"

min-pool-size="5"

max-pool-size="15"

url="jdbc:oracle:thin:@(RECOMMENDED TNS)
fastConnectionFailoverEnabled="true"
onsConfiguration="nodes=primary-scan:6200,secondary-
scan:6200\nwalletfile=/net/host/path/onswallet\nwalletpassword=myWalletPasswd">
</connection-pool>

</ucp-properties>

b.) Specify the wallet for FAN do one of the following:
To use AUTO-ONS with wallets an application must set the following Java system properties:

10 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

“-Doracle.ons.walletfile=/replace_this_with_host_path/onswallet” and
“-Doracle.ons.walletpassword=myONSwalletPassword”
This cannot be set on a per-pool or per-connection basis

To use explicit ONS configuration (instead of AUTO-ONS) do one of the following:
i) Programmatically within UCP, call setONSConfiguration(), for example

pds.setONSConfiguration(“nodes=primary-scanhost:6200,secondary-
scanhost:6200\nwalletfile=/replace_this_with_host_path/onswallet\nwalletpass
word=myWalletPassword”);

ii) Set declaratively using an UCP XML configuration file: (For Oracle Call Interface (OCI) applications
Oracle client drivers 12.2 or later are required)
Add the following to the <default_parameters> section of an oraaccess.xml file:

<default_parameters>

(Other settings may be present in this section)
<events>

True

</events>

<ons>

<auto_config>true</auto_config>
<wallet_location>/path/onswallet</wallet_location>
</ons>

</default_parameters>

The <wallet_location> path should be the name of the directory containing the wallet. Other parameters
may be set in the ons section of oraaccess.xml, including <hosts>, <max_connections>, and
<subscription_wait_timeout>. Drivers that support native event setting controls may omit the <events>
section and use the driver setting instead. By default, connections will be established to the database
even if ONS fails. If you prefer connections to fail in this scenario, you can add a section to the same level
as <events> and <ons>:
<fan>

<subscription_failure_action> error</subscription_failure_action>

</fan>

Place the oraaccess.xml file in the same directory as the tnsnames.ora and sqglnet.ora network files. For
example, when using Oracle Instant Client these files might be in the default directory network/admin.
Alternatively, all network configuration files can be put in another accessible directory. Then set the
environment variable TNS_ADMIN to that directory name.

Maintenance without impacting your Applications

Drain Sessions Before Maintenance

The recommended approach for planned maintenance is to provide time for current work to complete before
maintenance starts. You can do this by draining requests initiated by FAN for Oracle connection pools and Oracle
drivers or third parties using these pools. The Oracle Database also drains work directly. Services connected to the
Oracle Database are configured with connection tests and a drain_timeout specifying how long to allow for
draining, and the stopoption, IMMEDIATE, that applies after the drain timeout expires. The stop, relocate and
switchover operations include a drain_timeout and stopoption to override the set values if needed.

When planned maintenance starts, a FAN planned-down event is posted to all applications subscribing to FAN.
Upon receiving this FAN event, the FAN-aware pool reacts by clearing idle sessions and marking active sessions
to be released when the request completes or when the next connection check occurs. The FAN event causes
sessions to drain from the instance without disrupting work for the period specified by drain_timeout. If not all
sessions have checked in and the drain_timeout has been reached, the stopoption applies and the services are
stopped (using IMMEDIATE). Starting with Oracle Database 18c, the database marks sessions to be drained. Once

11 Continuous Availability / Version [1.0]

Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

marked, the database applies rules to find a safe place to drain sessions without disturbing the application.
Draining continues through the drain_timeout period.

Use draining in combination with your chosen failover solution for those requests that do not complete within the
allocated time for draining. Your failover solution will attempt to recover sessions that did not drain in the
allocated time. There is no need to restart application servers when planned maintenance follows best practices.

Configure for Planned Draining

By using one or both approaches, planned maintenance is hidden from applications connected to the Oracle
Database. Before planned maintenance, drain or failover database sessions at the database instance so
application work is not interrupted.

The Recommended Approach

A FAN-aware Oracle connection pool is the recommended solution for hiding planned maintenance. The Oracle
pools provide full lifecycle: draining, reconnecting and rebalancing across the MAA system. As the maintenance
progresses and completes, sessions are moved and rebalanced. There is no impact to users when your
application uses an Oracle Pool with FAN, and returns connections to the pool between requests. No application
changes whatsoever are needed to use FAN.

When the FAN event is received by an Oracle pool, the Oracle pool marks all connections connected to the
instance to be drained. Immediately, checked-in connections are closed so that they are not re-used. In-use
connections remain marked to be closed when they are next checked-in to the connection pool. As they are
returned to the pool, these connections are released gradually.

Best practice for application usage is to check out connections for the time that they are needed, and then check
in to the pool when complete for the current actions. This is important for best application performance at
runtime, and for rebalancing work at runtime and during maintenance and failover events.

If you are using a third party, Java-based application server, the most effective method to achieve draining and
failover is to replace the pooled data source with UCP. This approach is supported by many application servers
including Oracle WebLogic Server, IBM WebSphere, IBM Liberty, Apache Tomcat, Red Hat WildFly (JBoss), Spring,
and Hibernate, and others. Technical Briefs from both Oracle and other vendors such as IBM describe how to use
UCP with these application servers. Using UCP as the data source allows UCP features such as Fast Connection
Failover, Runtime Load Balancing and Application Continuity to be used with full certification. Many customer
studies can be found at oracle.com under the Technology pages describing “Application Continuity” and “JDBC”

Alternative Approaches - Oracle Database Draining or the Oracle Driver
Draining
If you cannot use an Oracle pool with FAN, the Oracle database itself drains the sessions. The database starts to
look for safe places to release connections. The database uses an extensible set of rules and heuristics to detect
when to take the database session away. When draining starts, the database session persists at the database until
arule is satisfied. The rules include the following:

- Standard application server connection tests for connection validity

« Custom SQL tests for validity

« Request boundaries are in effect and the current request has ended

For the Connection Tests, it is standard practice for application servers, pooled applications, job schedulers, and
so on to test connections when borrowed from connection pools, when returned to the pool and, at batch
commits. During the drain period, the database intercepts the connection test, closes the connection and returns
a failed status for the test. The application layer issuing the connection test is ready to handle a failed return
status and issues a further request, to obtain a different connection. The application is not disturbed.

12 Continuous Availability / Version [1.0]

Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

Oracle Driver Draining with In-Band FAN

Starting with Oracle Database 18c, together with Oracle Database, Drivers 18c and later, the drivers receive FAN
in-band events for planned down, enabling draining. The drivers look for end of request status and connection
tests to close the connection safely. The driver uses connection tests that do not use SQL, PING-based such as
connection.isValid(), CheckConStatus, or OCI_ATTR_SERVER_STATUS. Using request boundaries relies on Oracle
Database 12c pools and later, or Java Pools that are using JDK9 or later. Your application must follow best
practices and return connections to these pools when your request is completed.

Connection Tests
PING AND END REQUEST:

Depending on the outage, applications may receive stale connections in a race window when connections are
borrowed before Fast Connection Failover (FCF) is processed. This can occur, for example, on a clean instance
down when sockets are closed coincident with incoming connection requests. To prevent the application from
receiving any errors, connection checks should be enabled at the connection pool.

JDBC Universal Connection Pool

setValidateConnectionOnBorrow() — Specifies whether or not connections are validated when the
connection is borrowed from the connection pool. The method enables validation for every connection
that is borrowed from the pool. The default value is false. Set the value to true so validation is performed.

JDBC Driver connection Tests

When using a connection pool connection.isValid() or SQL connection tests can be set in the property file.
connection.isValid() is a local call starting with 12.2, and is recommended to be enabled by default for use
when

borrowing a connection from all Java-based connection pools, and also with job schedulers, or similar,
before submitting a request on a connection to the database.

OClI Connections

To verify that the connection to the server is terminated by either FAN or an OCI_ERROR, an application
should code checking the value of the attribute OCI_ATTR_SERVER_STATUS in the server handle. In
response to the FAN event the OCl layer sets the OCI_ATTR_SERVER_STATUS attribute to
OCI_SERVER_NOT_CONNECTED if the service is down. For scheduled maintenance this status is set
without removing the connection to allow a grace period for the work to complete. When using FAN to
report planned maintenance, the application checks OCI_ATTR_SERVER_STATUS before borrow and
after return to the pool, and drops the session only these safe places only. Dropping closed connections
before borrow and after return leads to a good user experience with no application errors received during
planned maintenance. When using FAN to report unplanned down, the application receives an error
immediately. This is the only connection test that requires code. All other connection tests are
configurable.

ODP.NET Provider

CheckConStatus is on by default. This property is used to enable checking of the status of the connection
before putting the connection back into the ODP.NET connection pool.

SQL CONNECTION TESTS

Every application server has a feature to test the validity of the connections in their respective connection pools,
which is set either by a configuration property or at the administrative console. The purpose of the test is to
prevent vending an unusable connection to an application, and when an unusable connection is detected, to
remove it when released to the pool.

Across the various application servers, the tests have similar names. The tests offered use various approaches,
the most common being a SQL statement. Oracle recommends that Java application servers use the standard
Java call connection.isValid(). Beginning with Oracle Database 18c, all tests are used to drain the database. Also

13 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

beginning with Oracle Database 18c, the database drains sessions without using FAN by inspecting sessions for
safe draining points. Inspection starts automatically when the service is stopped or relocated. Server draining
supports all drivers.

There are four SQL connection tests added for every database service and pluggable database service by default,
so if an application uses these SQL tests they are already covered:

e SELECT 1 FROM DUAL,

e SELECT COUNT(*) FROM DUAL;
e SELECT 1,

e BEGIN NULL;END;

Configuring more connection tests for Draining at the Server

You can add, delete, enable or disable connection tests to a service, a pluggable database, or non-container
database. Use the view DBA_CONNECTION_TESTS to see those added and enabled. Examples -

By default, the driver uses ping tests. There is no need to enable for the driver. If you want the database to use to
any test that uses ping such as isValid, isUsable, OClping, or connection.status, then use a SQL statement similar
to the following:

SQL> execute dbms_app_cont_admin.enable_connection_test(dbms_app_cont_admin.ping_test);

To add a new server-side SQL connection test for a pluggable database or non-container database, log on to the
non-container database and use a SQL statement similar to the following:

SQL> execute dbms_app_cont_admin.add_sql_connection_test('select * from dual;',[SERVICE]);

Transparent Application Continuity

Transparent Application Continuity is a mode of Application Continuity beginning with Oracle Database 18c that
transparently tracks and records session and transactional state so that a database session can be recovered
following recoverable outages. This is done safely and with no need for a DBA to have any knowledge of the
application or to make application code changes. Transparency is achieved by using a state-tracking
infrastructure that categorizes session state usage as an application issues calls to the database. The use of state
tracking future proofs applications using Transparent Application Continuity as applications or environments
change.

Transparent Application Continuity Coverage

Transparent Application Continuity for Oracle Autonomous Database supports the following clients. It is strongly
recommended to use the latest client drivers. Oracle Database 19c client drivers and later provide full support for
TAC.

« Oracle JDBC Replay Driver 18c or later. This is a JDBC driver feature provided with Oracle Database 18c
for Application Continuity.

« Oracle Universal Connection Pool (UCP) 18c or later.
« Oracle WebLogic Server 18c, and third-party JDBC application servers using UCP

- Java connection pools or standalone Java applications using Oracle JDBC - Replay Driver 12c or later with
Request Boundaries

« OCl Session Pool 19c or later

« SQL*Plus 19c or later

. ODP.NET Unmanaged Provider 18c or later

- Oracle Call Interface based applications using the 19c OCl driver or later

If using a third party, Java-based application server, the most effective method to achieve high availability is to
replace the data source with UCP. This approach is supported by many application servers including Oracle

14 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

WebLogic Server, IBM WebSphere, IBM Liberty, Apache Tomcat, Red Hat WildFly (JBoss), Spring, and Hibernate,
and others. Whitepapers from both Oracle and other vendors such as IBM describe how to use UCP with these
application servers. Using UCP as the data source allows UCP features such as Fast Connection Failover, Runtime
Load Balancing and Application Continuity to be used with full certification.

Steps for using Transparent Application Continuity
USE A SUPPORTED CLIENT (SEE COVERAGE ABOVE)

RETURN CONNECTIONS TO THE CONNECTION POOL

You do not need to make any changes to your application for identifying request boundaries if the application
uses connections:

. from the Oracle connection pools or
« from the Oracle JDBC Replay Driver 18c or later or
. from the OCl-based applications using 19c or later

For the connection pool to function as described, the application must get connections when needed, and release
connections when not in use. This scales better and uses lower memory, compared to holding connections, and
provides request boundaries transparently. It is best practice that an application checks out a connection only for
the time it needs it. Holding a connection when not in use is not good practice.

Request boundaries are discovered and advanced transparently when using TAC with JDBC-thin driver release
18c and for OCl-based applications starting with 19c. This means lower resource usage and faster recovery
because request boundaries advance automatically, and statements that do not contribute to transactions and
session state are purged when no longer needed. It is still best practice to use an Oracle pool and to return your
connections to the Oracle pool between requests.

USE FAILOVER_RESTORE
TAC automatically restores preset states by setting FAILOVER_RESTORE to AUTO on your service.

If you find that you need preset session states in addition to the standard set, then you can register a callback, or
UCP label, to restore these states. If you find you need complex session states (such as temporary tables or
sys_context) restored, then use a callback with Application Continuity that offers this flexibility.

ENABLE MUTABLE USE IN THE APPLICATION

Mutable functions are functions that can return a new value each time they are executed. Support for keeping the
original results of mutable functions is provided for SYSDATE, SYSTIMESTAMP, SYS_GUID, and
sequence.NEXTVAL. If the original values are not kept and different values are returned to the application at
replay, replay is rejected. Oracle Database 19c automatically KEEPs mutables for SQL.

If you need mutables for PL/SQL then configure mutable objects using GRANT KEEP for application users, and
the KEEP clause for a

sequence owner. When KEEP privilege is granted, replay applies the original function result at replay.

For example:

|SQL> GRANT [KEEP DATE TIME | KEEP SYSGUID] .. to USER

| SQL> GRANT KEEP SEQUENCE mySequence to myUser on sequence.object |

SIDE EFFECTS ARE DISABLED

During normal runtime, Transparent Application Continuity detects side effects and does not replay them. A side
effect is an external action such as sending mail, transferring files, using TCP. The type of side effect is
distinguished between those that relate to an application’s logic and those that are internal, relating to database

15 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

housekeeping. For applications that use statements that have side effects, capture is disabled when the statement
is running. Capture is re-enabled automatically at the next discovered or explicit request boundary. Capture is
automatically re-enabled, when possible, for Java 18c replay driver and OCI 19c¢ driver by TAC as it supports
implicit request boundaries. If you want the side effects replayed, use Application Continuity that offers this
flexibility.

RESTRICTIONS

See the documentation for the most current list of restrictions.

Application Continuity Coverage

Application Continuity is customizable, allowing you to choose to replay side effects, for example mail, or to add
complex callbacks at failover that TAC does not allow. Use AC, if are on 12.2, you want to customize with side
effects or callbacks, or have an application that uses state such as session duration temp tables and does not
clean up.

APPLICATION CONTINUITY COVERAGE

Application Continuity for Oracle Database 18c supports the following clients:

« Oracle JDBC Replay Driver 12c or later. This is a JDBC driver feature provided with Oracle Database 12¢
for Application Continuity

« Oracle Universal Connection Pool (UCP) 12c or later
« Oracle WebLogic Server 12¢, and third-party JDBC application servers using UCP

- Java connection pools or standalone Java applications using Oracle JDBC - Replay Driver 12c or later with
Request Boundaries

- Applications and language drivers using Oracle Call Interface Session Pool 12c Release 2 or later
« SQL*Plus 19c or later

- ODP.NET Unmanaged Provider 12c Release 2 or later (“Pooling=true”;“Application Continuity=true”
default in 12.2 and later)

If using a third party, Java-based application server, the most effective method to achieve high availability is to
replace the data source with UCP. This approach is supported by many application servers including Oracle
WebLogic Server, IBM WebSphere, IBM Liberty, Apache Tomcat, Red Hat WildFly (JBoss), Spring and Hibernate,
and others. Using UCP as the data source allows UCP features such as Fast Connection Failover, Runtime Load
Balancing and Application Continuity to be used with certification.

Steps for using Application Continuity
USE A SUPPORTED CLIENT (SEE COVERAGE ABOVE)

RETURN CONNECTIONS TO THE CONNECTION POOL

The application should return the connection to the connection pool on each request. It is best practice that an
application checks out connection only for the time it needs it. Holding a connection when not in use is not good
practice. An application should therefore check out a connection and then check in that connection immediately
the work is complete. The connections are then available for subsequent use by other threads, or your thread
when needed again. Following this practice also embeds explicit request boundaries that Application Continuity
uses to identify safe places to resume and end capture. AC does not provide additional discovered request
boundaries as TAC does.

Use Failover_Restore

Some applications and mid-tiers configure connection pools such that all connections are, for example, in a
preset language or time zone. If session state is set intentionally on connections outside requests, and requests
expect this state, replay needs to re-create this state before replaying.

16 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

Most common states are restored automatically by setting FAILOVER_RESTORE to LEVEL1. If you preset session
states in addition to the standard set, then you will need to register a callback, or UCP label, to restore these
states. Refer to Application Continuity Technical brief listed in Additional Materials below.

If you need additional session states, use one of these options

« FAILOVER_RESTORE=LEVEL1 set on the service and
- Connection Initialization Callback for Java or the (older) TAF Callback for OCl or

« Universal Connection Pool or WebLogic Server Connection Labelling

ENABLE MUTABLE USE IN THE APPLICATION

See TAC section on Mutables.

DECIDE IF YOU WANT TO REPEAT SIDE EFFECTS DURING REPLAY

Side effects are replayed unless the application specifies otherwise. Applications that use external actions should
be reviewed to decide if requests with side effects make sense to replay or not. For example, does the application
want to send email again or transfer a file again? Frequently, it is desirable to replay the side effects. However,
sometimes it may be better not to. If a request has an external action that should not be replayed, that request
can use a connection that does not have Application Continuity enabled, or replay can be disabled for that request
using the disableReplay API for Java or OCIRequestDisableReplay for OCI. All other requests continue to be
replayed. If you do not wish to replay all side effects, use Transparent Application Continuity.

TRANSPARENT APPLICATION FAILOVER

Transparent Application Failover (TAF) is a client-side feature of OCI, OCCI, Java Database Connectivity (JDBC)
OCl driver, and ODP.NET that failover connections or SELECT statements for applications that do not alter Oracle
state after the initial setup of a connection. Set your FAILOVER_TYPE to BASIC for connections to failover and
SELECT for reconnecting and replaying SELECT statements. TAF pre-connect is not a recommended option
because it will cause delays at failover due to your application not being pre-connected in real situations.

Transparent Application Failover for Oracle Database supports the following clients:
- Oracle Call Interface (OCI)
« Oracle C++ Call Interface (OCCI)
« Oracle JDBC OCl driver (thick driver is not recommended in general)
« ODP.Net Unmanaged Provider
« Oracle Tuxedo with OCI

« OCl Session Pool

Steps for using Transparent Application Failover
USE A SUPPORTED CLIENT (SEE COVERAGE ABOVE)
USE FAILOVER_RESTORE

From Oracle Database 12.2 onwards check if the application is pre-setting values on connections. Some
applications and mid-tiers configure connection pools such that all connections are, for example, in a pre-set
language or time zone. If session state is set intentionally on connections outside requests, and requests expect
this state, replay needs to re-create this state before replaying.

Most common states are restored automatically by setting FAILOVER_RESTORE to LEVEL1. If you pre-set session
states in addition to the standard set, then you will need to register a TAF callback to restore these states

Use the following options together:

17 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

FAILOVER_RESTORE=LEVEL1 set on the service
TAF Callback for OCI

Starting with RDBMS 12.2, FAILOVER_RESTORE=LEVEL 1is the recommended method if you do not already have
a callback.

TAF WITH TRANSACTION GUARD

Starting with Oracle Database 12.2, at failover, Transparent Application Failover (TAF) obtains a new connection
and, if Transaction Guard is enabled, invokes Transaction Guard to force the commit outcome. If Transaction
Guard returns committed and completed, TAF continues and the application sees no errors. If Transaction Guard
returns uncommitted or committed but not completed, TAF returns aTAF error to the application. TAF maintains
the new connection. When TAF and Transaction Guard are both used, developers can use the TAF error codes
(ORA-25402, ORA-25408, ORA-25405) to decide to resubmit transactions or to return a message indicating
uncommitted to the user. It is ONLY safe to resubmit or to return uncommitted on these errors codes when BOTH
TAF and Transaction Guard are enabled. It is not safe to resubmit or to return uncommitted if only TAF is enabled.
Application Continuity does the resubmission for you.

Refer to the Transaction Guard Technical brief referred below.

KNOWING YOUR PROTECTION LEVEL WHEN USING TAC
ORAC

PROTECTION-LEVEL STATISTICS

Use the statistics for request boundaries and protection level to monitor the level of coverage. Application
Continuity collects statistics from the system, the session, and the service, enabling you to monitor your
protection levels. The statistics are available in V$SESSTAT, V$SYSSTAT, and in later 19c versions,
V$SERVICE_STATS. These statistics are saved in the Automatic Workload Repository and are available in
Automatic Workload Repository reports.

Statistic Total per Second per Trans
cumulative begin requests 1,500,000 14,192.9 2.4
cumulative end requests 1,500,000 14,192.9 2.4
cumulative user calls in request 6,672,566 63,135.2 10.8
cumulative user calls protected 6,672,566 63,135.2 10.8

Tip: To report the protection level by PDB or by using historic data, see the Appendix for example SQL to use.
The output is similar to the following:
TAC or AC are enabled and protecting your application when

« Cumulative user calls in request = cumulative user calls protected
« And the above numbers are not equal to zero

This protection level is measured inside the database. The client may need to use an ORDER BY clause in queries
and preset the initial session state if this contains state not covered by FAILOVER_RESTORE to achieve this level
of protection.

The example above shows an increasing number of Begin and End requests. The number itself will depend on
how frequently your application checks out and checks in to the connection pool or what request boundaries the
database can discover when using TAC. The rate of increase of these values will depend on the rate your requests
are being submitted. You can compute the percentage of user calls being protected using:

Percentage of Protected Calls = cumulative user calls protected / cumulative user calls in request * 100

It is possible that the percentage of protected calls is less than 100%? You may be using JDBC concrete classes,
side effects are disabled, unrecoverable state may be being used, or the application may choose to disable
application continuity for certain requests. If your application is not 100% protected, the ORAchk component

18 Continuous Availability / Version [1.0]

Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

acchk can be used, at your own site, to show where in your application coverage is below 100%. Your
management can decide whether to follow the advisor or take no action by evaluating the impact.

CONFIGURING YOUR CLIENTS

JDBC-thin Driver Checklist

1.

Ensure all recommended patches are applied at the client. Refer to the MOS note Client Validation Matrix
for Application Continuity (Doc ID 2511448.1)

Configure the Oracle JDBC Replay Data Source in the property file or on console:
setConnectionFactoryClassName(“oracle.jdbc.replay.OracleDataSourceImpl®); or
setConnectionFactoryClassName(“oracle.jdbc.replay.OracleXADataSourceImpl”); (for XA)

Use JDBC Statement Cache for Coverage and Performance

For best coverage and performance, use the JDBC driver statement cache in place of an application
server statement cache. This allows the driver to know that statements are closed and memory to be
freed at the end of requests.

To use the JDBC statement cache, use the connection property oracle.jdbc.implicitStatementCacheSize

(OracleConnection.CONNECTION_PROPERTY_IMPLICIT_STATEMENT_CACHE_SIZE). The value for the
cache size matches your number of open_cursors. For example:
oracle.jdbc.implicitStatementCacheSize=nnn where nnn is typically between 10 and 100 and is equal to
the number of open cursors your application maintains.

Tune the Garbage Collector, For many applications the default Garbage Collector tuning is sufficient. For
applications that return and keep large amounts of data you can use higher values, such as 2G or larger.
For example: java -Xms3072m -Xmx3072m It is recommended to set the memory allocation for the
initial Java heap size (ms) and maximum heap size (mx) to the same value. This prevents using system
resources on growing and shrinking the memory heap.

Commit

For JDBC applications, if the application does not need to use AUTOCOMMIT, disable AUTOCOMMIT
either in the application itself or in the connection properties. This is important when UCP or the replay
driver is embedded in third-party application servers such as Apache Tomcat, IBM WebSphere, IBM
Liberty and Red Hat WildFly (JBoss).

Set autoCommit to false through UCP PoolDataSource connection properties --
connectionProperties="{autoCommit=false}"
6. JDBC Concrete Classes

For JDBC applications, Oracle does not support deprecated oracle.sql concrete classes BLOB, CLOB,
BFILE, OPAQUE, ARRAY, STRUCT or ORADATA. (See MOS note 1364193.1 New JDBC Interfaces). Use
ORAchk -acchk on the client to know if an application passes. The list of restricted concrete classes for
JDBC Replay Driver is reduced to the following starting with Oracle JDBC-thin driver version 18c and
later: oracle.sql.OPAQUE, oracle.sql.STRUCT, oracle.sql.ANYDATA

7. Configure Fast Connection Failover (FCF)
For client drivers 12c and later
o Usethe recommended URL for auto-ons

o Check that ons.jar (plus optional WALLET jars, osdt_cert.jar, osdt_core.jar, oraclepki.jar) are on
the CLASSPATH

o Set the pool or driver property fastConnectionFailoverEnabled=true
o For third-party JDBC pools, UCP is recommended
o Open port 6200 for ONS (6200 is the default port, a different port may have been chosen)

For client drivers prior to 12c use the addresses provided:
19 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

Set oracle.ons.nodes =XXX01:6200, XXX02:6200, XXX03:6200

OCI (Oracle Call Interface) Driver Checklist

1. Ensure all recommended patches are applied at the client. Refer to the MOS Note Client Validation Matrix
for Application Continuity (Doc ID 251148.1)

2. Replace OCIStmtPrepare with OCIStmtPrepare2. OCIStmtPrepare() has been deprecated since 12.2. All
applications should use OCIStmtPrepare2(). TAC and AC allow OCIStmtPrepare but do not replay this
statement. Additional details here.

3. Touse FAN for OCl-based applications, do the following:
o ATP-D presets ag_ha_notifications on the services
o Use the recommended Connection String for auto-ons
o Set auto_config, events, and wallet_location (optional) in oraaccess.xml (See Appendix)
o Link the application with the O/S client thread library
o Open port 6200 for ONS (6200 is the default port, a different port may have been chosen)

For client drivers prior to 12c use the addresses provided in oraccess.xml.

ODP.NET Unmanaged Provider Driver Checklist

1. Ensure all recommended patches are applied at the client. Refer to the MOS Note Client Validation Matrix
for Application Continuity (Doc ID 251148.1)

2. Touse FAN for OCl-based applications, do the following:
« ATP-D presets aq_ha_notifications on the services
« Use Recommended Connection String for auto-ons
- Set onsConfig and wallet_location (optional) in oraaccess.xml (See Appendix)
« Open port 6200 for ONS (6200 is the default port, a different port may have been chosen)
- Set FAN, in the connection string —
"user id=oracle; password=oracle; data source=HA; pooling=true; HA events=true;“
- (optional) Set Runtime Load Balancing, also in the connection string -

"user id=oracle; password=oracle; data source=HA; pooling=true; HA events=true; load

balancing=true;"

CONCLUSION

The Oracle Database is configured and managed for high availability on your behalf. No additional configuration
or management is required by you.

There are a few simple steps to achieving Continuous Availability for your applications:

« Select the database service that is appropriate for your SLA’s

- Configure Fast Application Notification (FAN)

« Use the recommended connection string for your applications

- Use application best practices to optimize for draining

« Use Transparent Application Continuity or Application Continuity for continuous service

By following these five simple steps, planned maintenance activities will no longer require outages and unplanned
events will no longer result in failed transactions and interruptions to service for users in most cases.

20 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

https://docs.oracle.com/en/database/oracle/oracle-database/19/lnoci/deprecated-oci-functions.html#GUID-FD74B639-%208B97-4A5A-BC3E-269CE59345CA

ORACLE

APPENDIX: CONFIGURING YOUR SERVICES

When using Oracle Database, you can create services on Oracle RAC that use Transparent Application Continuity,
or Application Continuity, or TAF. You can use roles to distinguish whether the services are active on Active Data
Guard or the primary database. The following examples add as service named GOLD to illustrate this:

Transparent Application Continuity

$ srvctl add service -db mydb -service GOLD -preferred instl -available serv2 -
failover_restore AUTO -failoverretry 1 -failoverdelay 3 -commit_outcome TRUE -failovertype
AUTO -replay_init_time 600 -retention 86400 -notification TRUE -drain_timeout 300 -
stopoption IMMEDIATE

Or if a service with more than one active instance is needed (and in this case no available instance)

$ srvctl add service -db mydb -service GOLD -preferred instl,inst2 -failover_restore AUTO -
failoverretry 1 -failoverdelay 3 -commit_outcome TRUE -failovertype AUTO -replay_init_time
600 -retention 86400 -notification TRUE -drain_timeout 300 -stopoption IMMEDIATE

Transparent Application Failover

$ srvctl add service -db mydb -service BRONZE -preferred instl -available inst2 -
failover_restore LEVEL1 -failoverretry 1 -failoverdelay 3 - commit_outcome TRUE -
failovertype SELECT -retention 86400 -notification TRUE -drain_timeout 300 -stopoption
IMMEDIATE

To add with the Data Guard role, here is the TAC example:

$ srvctl add service -db mydb -service GOLD -preferred instl -available inst2 -
failover_restore AUTO -failoverretry 1 -failoverdelay 3 - commit_outcome TRUE -failovertype
AUTO -replay_init_time 600 -retention 86400 -notification TRUE -role PHYSICAL_STANDBY -
drain_timeout 300 -stopoption IMMEDIATE

If the recommended Database connect string or URL (described earlier in this paper) is used, retry attempts are
managed by Oracle Database Net Services.

Planned Draining - server-side operation

Many enterprises run a large number of services, whether it be many services offered by a single database or
instance, or many databases offering a few services running on the same node. Starting with Oracle Database 12c
Release 2, you no longer need to run SRVCTL commands for each individual service but need only specify the
node name, database name, pluggable database name, or instance name for all affected services.

Both DRAIN_TIMEOUT and STOPOPTION are service attributes that you can define when you add the service or
modify it after creation. You can also specify these attributes using SRVCTL, which will take precedence over what
is defined on the service. The largest DRAIN_TIMEOUT for a group of services is applied across the group
operation. Refer to the following examples:

Relocate all services by database, node or pdb on RAC

$srvctl relocate service -database <db_unique name> -oldinst <old_inst _name> [-newinst
<new_inst_name>] -drain_timeout <timeout> -stopoption <stop_option>

$srvctl relocate service -database <db_unique_name> -currentnode <current_node> [-
targetnode <target_node>] -drain_timeout <timeout> -stopoption <stop_option>

$srvctl relocate service -database <db_unique_name> -pdb <pluggable_database> {-oldinst
<old_inst_name> [-newinst <new_inst name>] | -currentnode <current_node> [-targetnode
<target_node>]} -drain_timeout <timeout> -stopoption <stop_option>

21 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

Stop a service named GOLD on an instance named inst1 (a given instance)

$srvctl stop service -db myDB -service GOLD -instance instl -drain_timeout <timeout> -
stopoption <stop_option>

Stop a service named GOLD on all instance(s)

$srvctl stop service -db myDB -service GOLD -drain_timeout <timeout> -stopoption
<stop_option>

Start a service named GOLD on an instance named inst1 (a given instance)
$srvctl start service -db myDB -service GOLD -instance instl
Start/Stop everything at a node

$srvctl stop service -node <node_name> -drain_timeout <timeout> -stopoption <stop_option>

$srvctl stop service -db <db_unique_name> [-node <node name> | -instance <inst_name>] -
drain_timeout <timeout> -stopoption <stop_option>

$srvctl stop service -db <db_unique_name> [-node <node name> | -instance <inst_name>] -
pdb <pluggable_database> -drain_timeout <timeout> -stopoption <stop_option>

Data Guard Switchover

switchover to <db_resource_name> [wait [xx]];

APPENDIX: USING ACCHK TO CHECK FOR CONCRETE
CLASSES

This check applies to Java applications only. It is used to determine whether Java applications use deprecated
Oracle JDBC concrete classes.

To use Application Continuity with Java, replace the deprecated Oracle JDBC concrete classes. For information
about the deprecation of concrete classes including actions to take if an application uses them, see My Oracle
Support Note 1364193.1. To know if the application is using concrete classes, use Application Continuity
checking (called acchk in Oracle ORAchk. Verify the application in advance while planning for high availability for
your application.

For JDBC driver version 12.2.0.2 and below, Application Continuity is unable to replay transactions that use
oracle.sql deprecated concrete classes of the form ARRAY, BFILE, BLOB, CLOB, NCLOB, OPAQUE, REF, or STRUCT
as a variable type, a cast, the return type of a method, or calling a constructor.

For JDBC driver version 18c and above, Application Continuity is unable to replay transactions that use oracle.sql
deprecated concrete classes of the form OPAQUE, REF, or STRUCT as a variable type, a cast, the return type of a
method, or calling a constructor.

Deprecated Java should be removed for Application Continuity to protect the application.

There are four values that control the Application Continuity checking for Oracle concrete classes. Set these
values either on the command line, or through shell environment variables, or mixed. The values are as follows:

Table 2-1 Application Continuity Checking for Concrete Classes

Command-Line Argument | Shell Environment Usage

Variable
—asmhome RAT_AC_ASMJAR This must point to a version of asm-all-XXXjar that you
jarfilename download from ASM Home Page.

22 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

-javahome RAT_JAVA_HOME This must point to the JAVA_HOME directory.
JDK8dirname
-appjar dirname RAC_AC_JARDIR To analyze the application code for references to Oracle

concrete classes, this must point to the parent directory
name for the code. The program analyzes .class files, and
recursively .jar files and directories.

-jdbcver RAC_AC_JDBCVER Target version for the coverage check

EXAMPLE APPLICATION CONTINUITY CONCRETE CLASS CHECKS SUMMARY
The following command checks the Application Continuity checking for Oracle concrete classes.

$./orachk -acchk -asmhome /path/orachk/asm-5.0.3/1ib/all/asm-all-5.0.3.jar -javahome
/usr/lib/jvm/jre-1.8.0-openjdk.x86_64 -jdbcver 19.1 -appjar /scratch/nfs/tmp/jarfiles

Outage Type | Status Message

Concrete Total : 114 Passed : 110 Warning : O Failed : 2 (Failed check count is one per file)
Class Checks

Failed [ac/workload/lobsanity/AnydataOut][[CAST]desc=
oracle/sql/ANYDATAmethodname=getDatalnfo,lineno= 38]

APPENDIX: USING ACCHK FOR APPLICATION CONTINUITY COVERAGE

Destructive testing is a good thing to do. However, introducing failures is non-deterministic. The application can

fail over in all the tests, and then in production a failure occurs elsewhere and unexpectedly some requests do not
fail over.

Using AC Check Coverage Analysis averts this situation by reporting in advance the percentage of requests that
are fully protected by Application Continuity, and for the requests that are not fully protected, which they are and
where. Use the coverage check before deployment, and after application changes. Developers and management
know how to protect an application release from failures of the underlying infrastructure. If there is a problem,
then it can be fixed before the application is released or waived knowing the level of coverage.

Executing the coverage check is rather like using SOL_TRACE. First run the application in a representative test
environment with Application Continuity trace turned on at the server side. The trace is collected in the standard
database user trace directory in user trace files. Then, pass this directory as input to Oracle ORAchk to report the
coverage for the application functions. As this check uses Application Continuity, the database and client must be
above 12c. The application need not necessarily be released with Application Continuity. The check is to help you
before release.

The following is a summary of the coverage analysis.

- If around trip is made to the database server and returns while Application Continuity’ capture is enabled
during capture phase, then it is counted as a protected call.

- If around trip is made to the database server while Application Continuity’ capture is disabled (not in a
request, or following a restricted call or a disable replay APl was called), then it is counted as an
unprotected call.

« Round trips ignored by capture and replay are ignored in the protection-level statistics.
At the end of processing each trace file, a level of protection for the calls sent to the database is computed. For
each trace: PASS (>= 75), WARNING (25 <= value <75), and FAIL (< 25)
Running the Coverage Report

Turn on tracing at database level.

23 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

Before running the workload, run the following statement as DBA on a test Oracle Database server so that the
trace files include the needed information.

SQL> alter system set event='10602 trace name context forever, level 28:
trace[progint_appcont_rdbms]:10702 trace name context forever, level 16';

Run through the application functions. To report on an application function, the application function must be run.
The more application functions run, the better the information that the coverage analysis provides.

Use Oracle ORAchk to analyze the collected database traces and report the level of protection, and where not
protected, reports why a request is not protected.

Using Application Continuity Checking for Protection Level
EXAMPLE COVERAGE REPORT

$./orachk -acchk -javahome /tmp/jdk1l.8.0_40 -apptrc
$ORACLE_BASE/diag/rdbms/$ORACLE_SID/trace

-javahome RAT_JAVA_HOME This must point to the JAVA_HOME directory.
JDK8dirname
-appjar dirname RAC_AC_JARDIR To analyze the application code for references to Oracle

concrete classes, this must point to the parent directory
name for the code. The program analyzes .class files, and
recursively .jar files and directories.

READING THE COVERAGE REPORT

The coverage check produces a directory named orachk_uname_date_time. This report summaries coverage and
lists trace files that have WARNINGS or FAIL status. To ensure all requests PASS (Coverage(%) = 100), check the
PASS report, acchk_scorecard_pass.html under the reports directory.

The output includes the database service name, the module name (from v$session.program, which can be set on
the client side using the connection property on Java, for example, oracle.jdbc.v$session.program), the ACTION
and CLIENT_ID, which can be set using setClientInfo with OCSID.ACTION and OCSID.CLIENTID respectively.

EXAMPLE OUTPUT: FOUND IN ORACHK_....HTML#ACCHK_SCORECARD

Coverage TotalRequest = 1088
Checks PASS = 1082
WARNING =1

FAIL = 5.

FAIL Trace file name = orcl1_ora_30467.trc Line number of Request start = 1409 Request
number =6

SERVICE NAME = (srv_auto_pdb1) MODULE NAME = (SQL*Plus) ACTION NAME = ()
CLIENT ID= () Coverage(%) = 12 Protected Calls = 1 Unprotected Calls =7

WARNING | Trace file name = ATPCDB12_ora_321597.trc Line number of Request start = 653
Request number = 1

SERVICE NAME = (HRPDB1_tp.atp.oraclecloud.com) MODULE NAME = (JDBC Thin
Client) ACTION NAME = () CLIENT ID = () Coverage(%) = 25 Protected Calls = 1
Unprotected Calls = 3

FAIL Trace file name = ATPCDB12_ora_292714.trc Line number of Request start = 1598
Request number =7

SERVICE NAME = (HRPDB1_tp.atp.oraclecloud.com) MODULE NAME = (SQL*Plus)
ACTION NAME = () CLIENT ID = () Coverage(%) = 16 Protected Calls = 1 Unprotected
Calls=5

FAIL Trace file name = ATPCDB12_ora_112022.trc Line number of Request start = 1167
Request number = 3

SERVICE NAME = (HRPDB1_tp.atp.oraclecloud.com) MODULE NAME = (JDBC Thin
Client) ACTION NAME = () CLIENT ID = ()

24 Continuous Availability / Version [1.0]

Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

Coverage(%) = 0 Protected Calls = O Unprotected Calls = 1

FAIL Trace file name = ATPCDB12_ora_112022.trc Line number of Request start = 1689
Request number =5

SERVICE NAME = (HRPDB1_tp.atp.oraclecloud.com) MODULE NAME = (JDBC Thin
Client) ACTION NAME = () CLIENT ID = ()

Coverage(%) = 0 Protected Calls = 0 Unprotected Calls = 1

PASS Report containing checks that passed: [Full
Path]_060219_184513/reports/acchk_scorecard_pass.html

APPENDIX: SQL TO REPORT PROTECTION BY PDB, SERVICE AND HISTORY

To report protection by PDB, use the following example:

set lines 85

col Service_name format a30 trunc heading "Service"

break on con_id skip1

col Total_requests format 999,999,9999 heading "Requests"

col Total_calls format 9,999,9999 heading "Calls in requests"

col Total_protected format 9,999,9999 heading "Calls Protected"

col Protected format 999.9 heading "Protected %"

select con_id, total_requests,
total_calls,total_protected,total_protected*100/NULLIF(total_calls,0) as Protected
from(

select * from

(select s.con_id, s.name, s.value

FROM GV$CON_SYSSTAT s, GV$STATNAME n

WHERE s.inst_id = n.inst_id

AND s.statistic# = n.statistic#

AND s.value I=0)

pivot(

sum(value)

for name in (‘cumulative begin requests' as total_requests, 'cumulative end requests' as
Total_end_requests, 'cumulative user calls in requests' as Total_calls, 'cumulative user
calls protected by Application Continuity' as total_protected)

)

order by con_id;

To report protection by service, use the following example:

set pagesize 60

set lines 120

col Service_name format a30 trunc heading "Service"

break on con_id skip1

col Total_requests format 999,999,9999 heading "Requests"”

col Total_calls format 9,999,9999 heading "Calls in requests"

col Total_protected format 9,999,9999 heading "Calls Protected"
col Protected format 999.9 heading "Protected %"

select con_id, service_name,total_requests,
total_calls,total_protected,total_protected*100/NULLIF(total_calls,0) as Protected
from(

select * from

(select a.con_id, a.service_name, c.name,b.value

FROM gv$session a, gv$sesstat b, gv$statname c

WHERE a.sid = b.sid

AND a.inst_id = b.inst_id

AND b.value !=0

AND b.statistic# = c.statistic#

25 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

ORACLE

AND b.inst_id = c.inst_id

AND a.service_name not in ('SYS$USERS','SYS$BACKGROUND"))

pivot(

sum(value)

for name in (‘cumulative begin requests' as total_requests, 'cumulative end requests' as
Total_end_requests, 'cumulative user calls in requests' as Total_calls, 'cumulative user
calls protected by Application Continuity' as total_protected)))

order by con_id, service_name;

To report protection history over last three days, use the following example:

set lines 85

col Service_name format a30 trunc heading"Service"

break on con_id skip1

col Total_requests format 999,999,9999 heading "Requests"

col Total_calls format 9,999,9999 heading "Calls in requests"

col Total_protected format 9,999,9999 heading "Calls Protected"
col Protected format 999.9 heading "Protected %"

set lines 85

col Service_name format a30 trunc heading"Service"

break on con_id skip1

col Total_requests format 999,999,9999 heading "Requests"

col Total_calls format 9,999,9999 heading "Calls in requests"

col Total_protected format 9,999,9999 heading "Calls Protected"
col Protected format 999.9 heading "Protected %"

select a.instance_number,begin_interval_time, total_requests, total_calls, total_protected,
total_protected*100/NULLIF(total_calls,0) as Protected

from(

select * from

(select a.snap_id, a.instance_number,a.stat_name, a.value

FROM dba_hist_sysstat a

WHERE a.value !=0)

pivot(

sum(value)

for stat_name in ('cumulative begin requests' as total_requests, 'cumulative end requests' as
Total_end_requests, 'cumulative user calls in requests' as Total_calls, 'cumulative user calls
protected by Application Continuity' as total_protected)

) a,

dba_hist_snapshot b

where a.snap_id=b.snap_id

and a.instance_number=b.instance_number

and begin_interval_time>systimestamp - interval '3’ day

order by a.snap_id,a.instance_number;

ADDITIONAL TECHNICAL BRIEFS

Fast Application Notification

http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/learnmore/fastapplicat
ionnotification12c-2538999.pdf

Embedding UCP with JAVA Application Servers:

WLS UCP Datasource, https://blogs.oracle.com/weblogicserver/wls-ucp-datasource

Design and Deploy WebSphere Applications for Planned, Unplanned Database Downtimes and Runtime Load
Balancing with UCP (http://www.oracle.com/technetwork/database/application-development/planned-
unplanned-rlb-ucp-websphere-24092 14.pdf)

26 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/learnmore/fastapplicationnotification12c-2538999.pdf
http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/learnmore/fastapplicationnotification12c-2538999.pdf
https://blogs.oracle.com/weblogicserver/wls-ucp-datasource
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-websphere-2409214.pdf
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-websphere-2409214.pdf

ORACLE

Reactive programming in microservices with MicroProfile on Open Liberty 19.0.0.4
(https://openliberty.io/blog/2019/04/26 /reactive-microservices-microprofile- 19004.html#oracle)

Design and deploy Tomcat Applications for Planned, Unplanned Database Downtimes and Runtime Load
Balancing with UCP (http://www.oracle.com/technetwork/database/application-development/planned-
unplanned-rib-ucp-tomcat-2265175.pdf).

Using Universal Connection Pool with JBoss AS (https://blogs.oracle.com/dev2dev/using-universal-connection-
pooling-ucp-with-jboss-as)

Application Continuity

http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity /overview/application-
continuity-wp-12c-1966213.pdf

Ensuring Application Continuity (https://docs.oracle.com/en/database/oracle/oracle-
database/19/racad/ensuring-application-continuity.html#GUID-C1EF6BDA-5F90-448F-A1E2-DC15AD5CFE75)

Transparent Application Failover

https://docs.oracle.com/en/database/oracle/oracle-database/23 /adfns/high-availability.html#GUID-
96599425-9BDA-483C-9BA2-4A4D13013A37

Transaction Guard
http://www.oracle.com/technetwork/database/database-cloud/private/transaction-guard-wp-12c-
1966209.pdf

GRACEFUL APPLICATION SWITCHOVER IN RAC WITH NO APPLICATION INTERRUPTION
My Oracle Support (MOS) Note: Doc ID 1593712.1

27 Continuous Availability / Version [1.0]

Copyright © 2025, Oracle and/or its affiliates / Public

https://openliberty.io/blog/2019/04/26/reactive-microservices-microprofile-19004.html#oracle
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-2265175.pdf
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-2265175.pdf
https://blogs.oracle.com/dev2dev/using-universal-connection-pooling-ucp-with-jboss-as
https://blogs.oracle.com/dev2dev/using-universal-connection-pooling-ucp-with-jboss-as
http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/overview/application-continuity-wp-12c-1966213.pdf
http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/overview/application-continuity-wp-12c-1966213.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/19/racad/ensuring-application-continuity.html#GUID-C1EF6BDA-5F90-448F-A1E2-DC15AD5CFE75
https://docs.oracle.com/en/database/oracle/oracle-database/19/racad/ensuring-application-continuity.html#GUID-C1EF6BDA-5F90-448F-A1E2-DC15AD5CFE75
https://docs.oracle.com/en/database/oracle/oracle-database/23/adfns/high-availability.html#GUID-96599425-9BDA-483C-9BA2-4A4D13013A37
https://docs.oracle.com/en/database/oracle/oracle-database/23/adfns/high-availability.html#GUID-96599425-9BDA-483C-9BA2-4A4D13013A37
http://www.oracle.com/technetwork/database/database-cloud/private/transaction-guard-wp-12c-1966209.pdf
http://www.oracle.com/technetwork/database/database-cloud/private/transaction-guard-wp-12c-1966209.pdf

ORACLE

Connect with us

Call +1.800.0RACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.
B blogs.oracle.com ﬁ facebook.com/oracle a twitter.com/oracle

Copyright © 2025, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document
is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of
merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or
indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written
permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

28 Continuous Availability / Version [1.0]
Copyright © 2025, Oracle and/or its affiliates / Public

https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle

	Feature set for keeping your Applications continuously available
	Draining and Rebalancing Sessions for Planned Maintenance
	Transparent Application Failover (TAF)
	Application Continuity (AC)
	Transparent Application Continuity (TAC)
	Which Solution Should I use?
	Instructions for Application Configuration

	Building Blocks for Continuous Availability of Your Application
	Use Services
	An Example of Services:
	Configure the Connection String or URL for High Availability
	Fast Application Notification (FAN)
	FAN Coverage

	Maintenance without impacting your Applications
	Drain Sessions Before Maintenance
	Configure for Planned Draining
	The Recommended Approach
	Alternative Approaches – Oracle Database Draining or the Oracle Driver Draining
	Oracle Driver Draining with In-Band FAN
	Connection Tests
	Configuring more connection tests for Draining at the Server

	Transparent Application Continuity
	Transparent Application Continuity Coverage
	Steps for using Transparent Application Continuity
	USE FAILOVER_RESTORE
	ENABLE MUTABLE USE IN THE APPLICATION
	SIDE EFFECTS ARE DISABLED

	Application Continuity Coverage
	APPLICATION CONTINUITY COVERAGE
	Steps for using Application Continuity
	Use Failover_Restore
	ENABLE MUTABLE USE IN THE APPLICATION
	DECIDE IF YOU WANT TO REPEAT SIDE EFFECTS DURING REPLAY

	TRANSPARENT APPLICATION FAILOVER
	Steps for using Transparent Application Failover
	TAF WITH TRANSACTION GUARD

	KNOWING YOUR PROTECTION LEVEL WHEN USING TAC OR AC
	PROTECTION-LEVEL STATISTICS

	CONFIGURING YOUR CLIENTS
	JDBC-thin Driver Checklist
	OCI (Oracle Call Interface) Driver Checklist
	ODP.NET Unmanaged Provider Driver Checklist

	CONCLUSION
	APPENDIX: CONFIGURING YOUR SERVICES
	Planned Draining – server-side operation

	APPENDIX: USING ACCHK TO CHECK FOR CONCRETE CLASSES
	APPENDIX: USING ACCHK FOR APPLICATION CONTINUITY COVERAGE
	Running the Coverage Report
	Using Application Continuity Checking for Protection Level

	APPENDIX: SQL TO REPORT PROTECTION BY PDB, SERVICE AND HISTORY
	ADDITIONAL TECHNICAL BRIEFS
	Fast Application Notification
	Embedding UCP with JAVA Application Servers:
	Application Continuity
	Transparent Application Failover
	Transaction Guard
	GRACEFUL APPLICATION SWITCHOVER IN RAC WITH NO APPLICATION INTERRUPTION

