

Deploying IoT Solutions with

ThingsBoard, Kafka, and K3s Kubernetes

on Oracle Roving Edge
Version 1.0

Copyright © 2025, Oracle and/or its affiliates

Public

2 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

Purpose statement

The purpose of this white paper is to present a scalable and resilient IoT solution designed to address the challenges of rea l-

time data processing and visualization in edge environments. By leveraging K3s for lightweight container orchestration, Kafka

for efficient data streaming, and ThingsBoard for comprehensive monitoring and visualization, this solution provides a robust

framework for IoT applications. Deployed on Oracle Linux 8.10 within an Oracle Roving Edge device, this architecture

ensures low-latency data handling and high availability, making it suitable for remote or resource-constrained scenarios.

Disclaimer

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of

Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle software

license and service agreement, which has been executed and with which you agree to comply. This document and information

contained herein may not be disclosed, copied, reproduced or distributed to anyone outside Oracle without prior written

consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual

agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation and

upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality, and should

not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any features or

functionality described in this document remains at the sole discretion of Oracle. Due to the nature of the product

architecture, it may not be possible to safely include all features described in this document without risking significant

destabilization of the code.

This document may include some forward-looking content for illustrative purposes only. Some products and features discussed

are indicative of the products and features of a prospective future launch in the United States only or elsewhere. Not all

products and features discussed are currently offered for sale in the United States or elsewhere. Products and features of the

actual offering may differ from those discussed in this document and may vary from country to country. Any timelines

contained in this document are indicative only. Timelines and product features may depend on regulatory approvals or

certification for individual products or features in the applicable country or region.

3 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

Table of contents

Purpose statement 2

Introduction 4

Architecture Overview 5

Solution Deployment 6

Prerequisites 6

Prepare the Oracle Linux 8.10 System 6

Install K3s (Lightweight Kubernetes) 7

Prepare for ThingsBoard Deployment 8

Deploy ThingsBoard using Helm 8

Access ThingsBoard UI via Public IP 10

Install and Run Kafka (Broker) via Helm 11

Deploy Kafka Producer 12

Deploy Kafka Consumer 14

Publish Simulated Temperature/Humidity via HTTP 18

Create ThingsBoard Dashboard 19

4 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

Introduction

The rapid growth of IoT applications, especially in environments requiring real-time data processing and visualization, has

increased the demand for scalable and robust edge computing solutions. In scenarios where IoT devices generate large amounts

of data, efficient data collection, processing, and visualization are crucial.

This white paper presents a scalable IoT solution leveraging K3s for lightweight container orchestration, Kafka for data

streaming, and ThingsBoard for monitoring and visualization, all deployed on Oracle Linux 8.10 within an Oracle Roving Edge

device.

By combining K3s, Kafka, and ThingsBoard, this solution provides a resilient, scalable architecture for temperature

monitoring, which can be easily extended to other use cases such as humidity, pressure, or industrial sensor data.

The Oracle Roving Edge device serves as the compact, edge-based deployment platform, delivering low-latency processing and

reliable data handling in remote or constrained environments.

Note: This content is provided for informational purposes and self-supported guidance only. Consultancy or other assistance

related to the content is not covered under the Oracle Support contract or associated service requests. If you have questions or

additional needs, then please reach out to your Oracle Sales contact directly.

5 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

Architecture Overview

The proposed IoT solution architecture leverages a combination of lightweight container orchestration, data streaming, and

visualization components, specifically designed for deployment on an Oracle Roving Edge device running Oracle Linux 8.10.

The architecture is structured to efficiently collect, process, and visualize real-time data from IoT sensors, with temperature

and humidity monitoring as a primary use case.

Key Components:

• IoT Devices (Sensors): The edge environment is equipped with IoT sensors (e.g., temperature and humidity sensors)

that continuously generate data. These sensors transmit data using lightweight protocols like MQTT or HTTP for

efficient ingestion.

• Data Ingestion (MQTT/HTTP): The sensor data is ingested through MQTT or HTTP protocols, which are well-suited

for low-latency, real-time communication. This ingestion layer acts as a bridge between the IoT devices and the data

pipeline, ensuring reliable data flow.

• Kafka Broker (Data Streaming & Pipeline): Kafka acts as the core data streaming and processing engine. It receives

data from the ingestion layer and stores it in a scalable, fault-tolerant log. Kafka ensures data continuity and

consistency while managing high throughput for real-time analytics.

• Kafka Connector/Producer: Kafka Connector a custom Kafka producer is configured to push the ingested data to the

processing cluster. It serves as a dedicated pipeline handler that efficiently transfers streaming data to the K3s cluster.

• K3s Cluster (Container Platform): The K3s cluster hosts both Kafka and ThingsBoard in separate pods, orchestrating

the deployment efficiently. Kafka pods handle streaming data aggregation and message queuing. ThingsBoard pods

process incoming data and store it in a database, preparing it for visualization, and K3s provides a lightweight, robust,

and scalable container platform suitable for edge deployments.

• ThingsBoard UI (Visualization & Monitoring): ThingsBoard serves as the front-end interface for data visualization

and monitoring. It displays real-time sensor data through dashboards and widgets, allowing users to monitor

temperature and humidity trends. Users can customize dashboards, set alerts, and analyze data directly through the

ThingsBoard interface.

Figure 1. Architecture diagram of IoT Solution at the Edge with K3s, Kafka, and ThingsBoard on Oracle Roving Edge

6 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

Solution Deployment

This section outlines the detailed process to deploy the IoT monitoring solution on an Oracle Roving Edge device running

Oracle Linux 8.10. The deployment leverages K3s for lightweight container orchestration, Kafka for real-time data streaming,

and ThingsBoard for data visualization. The process starts by preparing the Oracle Roving Edge device, installing the necessary

software components, and configuring the K3s environment. Next, Kafka is deployed within the cluster to handle data

ingestion from IoT sensors, followed by integrating ThingsBoard for monitoring and dashboard creation. Finally, the solution

is tested by simulating temperature and humidity data and visualizing it through the ThingsBoard UI. This step-by-step

approach ensures a streamlined setup while maintaining scalability and reliability for real-time edge-based data monitoring.

Prerequisites

Before you begin, ensure you have the following:

• Oracle Roving Edge Device with Oracle Linux 8.10:

o The device should be powered on and accessible (e.g., via SSH).

o Ensure you have root or sudo privileges.

• Network Connectivity:

o The device needs internet access for downloading packages and container images.

o Ensure necessary ports are open (e.g., 22 for SSH, 6443 for K3s API, 80/443 for ThingsBoard UI).

• System Resources:

o ThingsBoard can be resource intensive. Ensure your Roving Edge Device has sufficient CPU, RAM, and

storage. A minimum of 4GB RAM and 2 CPU cores is recommended for a basic ThingsBoard setup, with

more if you plan to handle significant data.

• Basic Linux Administration Knowledge:

o Familiarity with the Linux command line, systemctl, firewalld, and vim/nano is assumed.

Prepare the Oracle Linux 8.10 System

First, update your system and disable firewalld and SELinux for K3s simplicity (for production, consider configuring them

properly).

• Update System Packages:

sudo dnf update -y

sudo dnf upgrade -y

sudo dnf install -y curl vi git # Install useful tools

• Disable firewalld (Recommended for K3s simplicity on edge devices):

sudo systemctl stop firewalld

sudo systemctl disable firewalld

Note: For a production environment, you might want to configure firewalld to allow specific K3s and ThingsBoard

ports instead of disabling it entirely.

• Disable SELinux (Recommended for K3s simplicity): Edit the SELinux configuration file:

7 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

sudo vi /etc/selinux/config

Change SELINUX=enforcing to SELINUX=disabled.
This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=disabled
SELINUXTYPE= can take one of these three values:
targeted - Targeted processes are protected,
minimum - Process to be protected are selected for.
mls - Multi Level Security protection.
SELINUXTYPE=targeted

Reboot the system for SELinux changes to take effect:
sudo reboot

After rebooting, log back in.

Install K3s (Lightweight Kubernetes)

K3s is an excellent choice for edge devices due to its small footprint.

• Install K3s: The official K3s installation script is the easiest way.

curl -sfL https://get.k3s.io | sh -

This command will:

• Install K3s as a systemd service.

• Set up kubectl configuration in /etc/rancher/k3s/k3s.yaml.

• Start the K3s server.

• Verify K3s Installation: Check the K3s service status:

• sudo systemctl status k3s

You should see active (running).

Verify kubectl access:

sudo kubectl get nodes

sudo kubectl get pods --all-namespaces

You should see your node listed and various K3s system pods running.

• Configure kubectl for your user (Optional but recommended): To avoid using sudo with kubectl every time:

mkdir -p ~/.kube

sudo cp /etc/rancher/k3s/k3s.yaml ~/.kube/config

sudo chown $(id -u):$(id -g) ~/.kube/config

chmod 600 ~/.kube/config # Set appropriate permissions

8 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

Now you can run kubectl get nodes without sudo.

Prepare for ThingsBoard Deployment

You'll need Helm, the Kubernetes package manager, to deploy ThingsBoard.

• Install Helm:

curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3

chmod 700 get_helm.sh

./get_helm.sh

• Verify Helm installation:

helm version

• Add ThingsBoard Helm Repository:

helm repo add thingsboard https://thingsboard.github.io/thingsboard-helm-charts

helm repo update

Deploy ThingsBoard using Helm

ThingsBoard offers various deployment options. For a simple setup on an edge device, we'll use a basic configuration.

ThingsBoard requires a database; we'll use PostgreSQL, which can be deployed as part of the Helm chart.

• Create a Namespace for ThingsBoard:

kubectl create namespace thingsboard

• Configure ThingsBoard Values: It's good practice to create a values.yaml file to customize your ThingsBoard

deployment. This allows you to persist data, configure resources, and more.

Create a file named thingsboard-values.yaml (e.g., using vim thingsboard-values.yaml):

thingsboard-values.yaml
node:
kind: StatefulSet
 replicaCount: 1
 service:
 type: NodePort
 port: 8080
 nodePort: 30080 # NodePort for the main ThingsBoard node service
 resources:

9 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

 requests:
 cpu: 500m
 memory: 2Gi
 limits:
 cpu: 1000m
 memory: 3Gi
 persistence:
 enabled: true
 type: hostPath
 hostPath: /mnt/data/thingsboard-data
 size: 10Gi

webui:
 kind: Deployment
 replicaCount: 1
 service:
 type: NodePort
 port: 8084
 nodePort: 30084 # NodePort for the ThingsBoard Web UI
 env:
 - name: DISABLE_OAUTH2_UI
 value: "true" # Added to disable OAuth2 UI calls that cause 404

database:
 type: postgres
 host: thingsboard-postgresql
 port: 5432
 name: thingsboard
 username: postgres
 password: setplease # IMPORTANT: Change this to a strong, unique password!

postgresql:
 enabled: true
 auth:
 username: postgres
 password: setplease # IMPORTANT: Change this to a strong, unique password!
 database: thingsboard

 primary:
 # Use extraConfig to inject custom PostgreSQL settings
 extraConfig: |
 max_connections = 500
 shared_buffers = 512MB # Recommended: Adjust based on memory limits (e.g., 25% of memory)
 resources:
 requests:
 cpu: 1000m
 memory: 2Gi
 limits:
 cpu: 2000m
 memory: 4Gi

 persistence:
 enabled: true
 type: hostPath
 hostPath: /mnt/data/thingsboard-postgres-data
 size: 10Gi

10 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

Important:

• password: setplease: CRITICAL! Change setplease to a strong, unique password for both database.password and

postgresql.auth.password.

• nodePort values: Ensure 30080 and 30084 (or whatever you choose) are not already in use on your Oracle Roving

Edge Device.

• hostPath: Ensure these directories (/mnt/data/thingsboard-data and /mnt/data/thingsboard-postgres-data) exist on

your Oracle Linux 8.10 system and have sufficient permissions and free space. Create them if they don't exist:

sudo mkdir -p /mnt/data/thingsboard-data

sudo mkdir -p /mnt/data/thingsboard-postgres-data

sudo chmod -R 777 /mnt/data # Or more restrictive permissions if you understand them

• Deploy ThingsBoard: Now, deploy ThingsBoard using Helm, referencing your thingsboard-values.yaml file.

helm upgrade thingsboard thingsboard/thingsboard \

 --namespace thingsboard \

 -f thingsboard-values.yaml

This command will deploy ThingsBoard and its dependencies (like PostgreSQL) into the thingsboard namespace.

• Monitor Deployment Progress: You can watch the pods come up:

 kubectl get pods -n thingsboard -w

Wait until all pods (thingsboard, postgresql) are in the Running state. This might take several minutes depending on your

device's performance and internet speed.

Access ThingsBoard UI via Public IP

Now that we've explicitly configured the webui service as NodePort, you should be able to access it using your Oracle Roving

Edge Device's public IP address.

• Get the NodePort for thingsboard-webui:

• kubectl get svc -n thingsboard thingsboard-webui

o Look for the PORT(S) column. It should now show 8084:30084/TCP (or whatever nodePort you chose for

webui). The second number (30084 in this example) is the NodePort.

• Find your Oracle Roving Edge Device's Public IP: You'll need the public IP address of your Oracle Roving Edge

Device. You can usually find this through the Oracle Cloud Infrastructure (OCI) console where your Roving Edge

Device is managed, or by running a command like ip or hostname -I on the device itself (look for an IP that's

reachable from outside your local network).

• Login to ThingsBoard: Open your web browser on your local machine or any team member's machine and navigate

to: http://<YOUR_ROVING_EDGE_DEVICE_PUBLIC_IP>:<NODE_PORT>

• Replace <YOUR_ROVING_EDGE_DEVICE_PUBLIC_IP> with the actual public IP address of your Oracle Roving

Edge Device, and <NODE_PORT> with the NodePort obtained from the kubectl get svc command (e.g., 30084).

11 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

The default ThingsBoard credentials are:

System Administrator: sysadmin@thingsboard.org / sysadmin

Tenant Administrator: tenant@thingsboard.org / tenant

Customer User: customer@thingsboard.org / customer

It is highly recommended to change these default passwords immediately after your first login.

Figure 2. ThingsBoard Home Screen Overview.

Now that ThingsBoard and K3s are fully operational, we will deploy and configure Kafka (Broker), set up Kafka Producer and

Consumer services, and create a ThingsBoard Dashboard to monitor simulated temperature and humidity metrics. In addition,

we’ll simulate telemetry data being sent directly to ThingsBoard via HTTP to represent external IoT devices.

Install and Run Kafka (Broker) via Helm

• Add Bitnami Helm repo if not already added

12 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

helm repo add bitnami https://charts.bitnami.com/bitnami
helm repo update

• Create Kafka namespace
kubectl create namespace kafka

• Install Kafka with Zookeeper (single-node)
helm install kafka bitnami/kafka \
 --namespace kafka \
 --set replicaCount=1 \
 --set zookeeper.enabled=true \
 --set listeners.client.protocol=PLAINTEXT \
 --set allowPlaintextListener=true \
 --set auth.enabled=false

• Check if Kafka is up and running

kubectl get pods -n kafka

NAME READY STATUS RESTARTS AGE
kafka-controller-0 1/1 Running 0 5m43s
kafka-controller-1 1/1 Running 0 5m43s
kafka-controller-2 1/1 Running 0 5m43s

kubectl get svc -n kafka

Deploy Kafka Producer

The steps below show how to deploy Kafka Producer inside a K3s cluster to be utilized to send simulated

temperature/humidity data to the existing Kafka Broker already configured in the system:

• Create a ConfigMap with the Python Kafka Producer script

13 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

cat <<EOF | kubectl apply -n thingsboard -f -
> apiVersion: v1
> kind: ConfigMap
> metadata:
> name: kafka-producer-script
> data:
> kafka_producer.py: |
> from kafka import KafkaProducer
> import json
> import time
> import random
>
> producer = KafkaProducer(
> bootstrap_servers='thingsboard-kafka:9092',
> value_serializer=lambda v: json.dumps(v).encode('utf-8')
>)
>
> while True:
> payload = {
> "temperature": round(random.uniform(20, 30), 2),
> "humidity": round(random.uniform(40, 60), 2)
> }
> producer.send('iot-data', payload)
> print("Sent:", payload)
> time.sleep(5)
> EOF
configmap/kafka-producer-script created

Create a Pod that runs the Kafka Producer

cat <<EOF | kubectl apply -n thingsboard -f -
> apiVersion: v1
> kind: Pod
> metadata:
> name: kafka-producer
> spec:
> restartPolicy: Never
> containers:
> - name: kafka-producer
> image: python:3.9
> command: ["python"]
> args: ["/app/kafka_producer.py"]
> volumeMounts:
> - name: script
> mountPath: /app
> volumes:
> - name: script
> configMap:
> name: kafka-producer-script
> EOF
pod/kafka-producer created

• Confirm that Kafka Producer pod is running:

kubectl get pods -n thingsboard

14 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

NAME READY STATUS RESTARTS AGE
kafka-producer 1/1 Running 0 5m51s
thingsboard-coap-transport-0 1/1 Running 1 (51m ago) 121m
thingsboard-http-transport-0 1/1 Running 1 (51m ago) 121m
thingsboard-jsexecutor-786f8d9f4d-4lz88 1/1 Running 3 (50m ago) 121m
thingsboard-jsexecutor-786f8d9f4d-8lwbm 1/1 Running 3 (50m ago) 121m
thingsboard-jsexecutor-786f8d9f4d-g2ppp 1/1 Running 3 (50m ago) 121m
thingsboard-jsexecutor-786f8d9f4d-jvrnq 1/1 Running 2 (50m ago) 121m
thingsboard-jsexecutor-786f8d9f4d-vzrqx 1/1 Running 3 (50m ago) 121m
thingsboard-kafka-0 1/1 Running 3 (50m ago) 121m
thingsboard-mqtt-transport-0 1/1 Running 1 (51m ago) 121m
thingsboard-node-0 1/1 Running 1 (51m ago) 121m
thingsboard-pg-pgpool-6cd4f945c6-wz8ld 1/1 Running 3 (51m ago) 121m
thingsboard-pg-postgresql-0 1/1 Running 1 (51m ago) 101m
thingsboard-redis-master-7c95c9fb56-fqn5m 1/1 Running 1 (51m ago) 121m
thingsboard-web-ui-5b5db6757b-ft785 1/1 Running 1 (51m ago) 121m
thingsboard-zookeeper-0 1/1 Running 1 (51m ago) 121m

• Confirm that Kafka producer is running and sending the humidity and temperature metrics.

kubectl logs -f kafka-producer -n thingsboard

Collecting kafka-python
 Downloading kafka_python-2.2.10-py2.py3-none-any.whl (309 kB)

 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 309.3/309.3 kB 3.2
MB/s eta 0:00:00
Installing collected packages: kafka-python
Successfully installed kafka-python-2.2.10
Sent: {'temperature': 27.43, 'humidity': 53.5}
Sent: {'temperature': 20.21, 'humidity': 45.8}
Sent: {'temperature': 24.91, 'humidity': 59.53}
Sent: {'temperature': 20.15, 'humidity': 58.18}
Sent: {'temperature': 26.3, 'humidity': 42.23}
Sent: {'temperature': 27.36, 'humidity': 43.61}
Sent: {'temperature': 22.76, 'humidity': 52.97}
Sent: {'temperature': 24.13, 'humidity': 42.68}
Sent: {'temperature': 20.51, 'humidity': 52.06}
Sent: {'temperature': 28.89, 'humidity': 41.37}
Sent: {'temperature': 21.13, 'humidity': 41.02}

Deploy Kafka Consumer

The steps below show how to deploy Kafka Consumer inside a K3s cluster to be utilized to receiver simulated

temperature/humidity data to the existing Kafka Broker already configured in the system:

• Create a kafka_consumer.py script and make it executable.

• vi kafka_consumer.py (add the code listed below)

• chmod 755 kafka_consumer.py

15 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

from kafka import KafkaConsumer
import json
import requests

Kafka settings
TOPIC_NAME = 'iot-data'
BOOTSTRAP_SERVERS = ['thingsboard-kafka:9092']

ThingsBoard settings
THINGSBOARD_HOST = 'http://thingsboard-web-ui:8080'
DEVICE_TOKEN = 'YOUR_DEVICE_ACCESS_TOKEN' # <-- Replace this with your actual token

Start consumer
consumer = KafkaConsumer(
 TOPIC_NAME,
 bootstrap_servers=BOOTSTRAP_SERVERS,
 auto_offset_reset='earliest',
 enable_auto_commit=True,
 group_id='iot-data-group',
 value_deserializer=lambda x: json.loads(x.decode('utf-8'))
)

print(f"[✓] Listening to Kafka topic '{TOPIC_NAME}'...")

Stream and forward data to ThingsBoard
for message in consumer:
 data = message.value

 print(f"[✓] Received from Kafka: {data}")

 try:
 response = requests.post(
 f"{THINGSBOARD_HOST}/api/v1/{DEVICE_TOKEN}/telemetry",
 headers={'Content-Type': 'application/json'},
 data=json.dumps(data)
)
 if response.status_code == 200:

 print("[✓] Successfully forwarded to ThingsBoard.")
 else:
 print(f"[!] ThingsBoard error: {response.status_code}, {response.text}")
 except Exception as e:
 print(f"[!] Exception while sending to ThingsBoard: {e}")

• Create the ConfigMap for Kubernetes to run the consumer inside of the K3s cluster, create the ConfigMap that holds

the script with the code listed below.

NOTE: Replace YOUR_DEVICE_ACCESS_TOKEN above with your actual token (you can get this from the ThingsBoard

UI under Devices → Your Device → Copy Token)

16 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

cat <<EOF | kubectl apply -n thingsboard -f -
apiVersion: v1
kind: ConfigMap
metadata:
 name: kafka-consumer-script
data:
 kafka_consumer.py: |
$(sed 's/^/ /' <<EOPYTHON
from kafka import KafkaConsumer
import json
import requests

TOPIC_NAME = 'iot-data'
BOOTSTRAP_SERVERS = ['thingsboard-kafka:9092']
THINGSBOARD_HOST = 'http://thingsboard-web-ui:8080'
DEVICE_TOKEN = 'FwQQXfKOS0anfilGZXXe'

consumer = KafkaConsumer(
 TOPIC_NAME,
 bootstrap_servers=BOOTSTRAP_SERVERS,
 auto_offset_reset='earliest',
 enable_auto_commit=True,
 group_id='iot-data-group',
 value_deserializer=lambda x: json.loads(x.decode('utf-8'))
)

print(f"[✓] Listening to Kafka topic '{TOPIC_NAME}'...")

for message in consumer:
 data = message.value

 print(f"[✓] Received from Kafka: {data}")
 try:
 response = requests.post(
 f"{THINGSBOARD_HOST}/api/v1/{DEVICE_TOKEN}/telemetry",
 headers={'Content-Type': 'application/json'},
 data=json.dumps(data)
)
 if response.status_code == 200:

 print("[✓] Successfully forwarded to ThingsBoard.")
 else:
 print(f"[!] ThingsBoard error: {response.status_code}, {response.text}")
 except Exception as e:
 print(f"[!] Exception while sending to ThingsBoard: {e}")
EOPYTHON
)
EOF

• Deploy the Kafka Consumer Pod

17 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

cat <<EOF | kubectl apply -n thingsboard -f -
apiVersion: v1
kind: Pod
metadata:
 name: kafka-consumer
spec:
 restartPolicy: Never
 containers:
 - name: kafka-consumer
 image: python:3.9
 command: ["/bin/sh"]
 args:
 - -c
 - |
 pip install kafka-python requests && \
 python /app/kafka_consumer.py
 volumeMounts:
 - name: script
 mountPath: /app
 volumes:
 - name: script
 configMap:
 name: kafka-consumer-script
EOF

• Confirm that Kafka Consumer pod is running:

kubectl get pods -n thingsboard

NAME READY STATUS RESTARTS AGE
kafka-consumer 1/1 Running 0 4m20s
kafka-producer 1/1 Running 0 5m51s
thingsboard-coap-transport-0 1/1 Running 1 (51m ago) 121m
thingsboard-http-transport-0 1/1 Running 1 (51m ago) 121m
thingsboard-jsexecutor-786f8d9f4d-4lz88 1/1 Running 3 (50m ago) 121m
thingsboard-jsexecutor-786f8d9f4d-8lwbm 1/1 Running 3 (50m ago) 121m
thingsboard-jsexecutor-786f8d9f4d-g2ppp 1/1 Running 3 (50m ago) 121m
thingsboard-jsexecutor-786f8d9f4d-jvrnq 1/1 Running 2 (50m ago) 121m
thingsboard-jsexecutor-786f8d9f4d-vzrqx 1/1 Running 3 (50m ago) 121m
thingsboard-kafka-0 1/1 Running 3 (50m ago) 121m
thingsboard-mqtt-transport-0 1/1 Running 1 (51m ago) 121m
thingsboard-node-0 1/1 Running 1 (51m ago) 121m
thingsboard-pg-pgpool-6cd4f945c6-wz8ld 1/1 Running 3 (51m ago) 121m
thingsboard-pg-postgresql-0 1/1 Running 1 (51m ago) 101m
thingsboard-redis-master-7c95c9fb56-fqn5m 1/1 Running 1 (51m ago) 121m
thingsboard-web-ui-5b5db6757b-ft785 1/1 Running 1 (51m ago) 121m
thingsboard-zookeeper-0 1/1 Running 1 (51m ago) 121m

• Confirm that Kafka consumer is running and receiving the humidity and temperature metrics.

kubectl logs -f kafka-consumer -n thingsboard

18 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

Collecting kafka-python
 Downloading kafka_python-2.2.10-py2.py3-none-any.whl (309 kB)

 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 309.3/309.3 kB 3.3
MB/s eta 0:00:00
Collecting requests
 Downloading requests-2.32.3-py3-none-any.whl (64 kB)

 ━━ 64.9/64.9 kB 8.0
MB/s eta 0:00:00
Collecting urllib3<3,>=1.21.1
 Downloading urllib3-2.4.0-py3-none-any.whl (128 kB)

 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 128.7/128.7 kB 12.4
MB/s eta 0:00:00
Collecting charset-normalizer<4,>=2
 Downloading charset_normalizer-3.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
(149 kB)

 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 149.5/149.5 kB 15.2
MB/s eta 0:00:00
Collecting idna<4,>=2.5
 Downloading idna-3.10-py3-none-any.whl (70 kB)

 ━━ 70.4/70.4 kB 6.3
MB/s eta 0:00:00
Collecting certifi>=2017.4.17
 Downloading certifi-2025.4.26-py3-none-any.whl (159 kB)

 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 159.6/159.6 kB 17.2
MB/s eta 0:00:00
Installing collected packages: kafka-python, urllib3, idna, charset-normalizer, certifi,
requests
Successfully installed certifi-2025.4.26 charset-normalizer-3.4.2 idna-3.10 kafka-python-2.2.10
requests-2.32.3 urllib3-2.4.0

[✓] Listening to Kafka topic 'iot-data'...

[✓] Received from Kafka: {'temperature': 23.23, 'humidity': 55.7}

[✓] Successfully forwarded to ThingsBoard.

[✓] Received from Kafka: {'temperature': 27.06, 'humidity': 43.67}

[✓] Successfully forwarded to ThingsBoard.

[✓] Received from Kafka: {'temperature': 24.44, 'humidity': 44.36}

[✓] Successfully forwarded to ThingsBoard.

[✓] Received from Kafka: {'temperature': 29.07, 'humidity': 59.95}

[✓] Successfully forwarded to ThingsBoard.

[✓] Received from Kafka: {'temperature': 24.16, 'humidity': 41.71}

[✓] Successfully forwarded to ThingsBoard.

[✓] Received from Kafka: {'temperature': 22.37, 'humidity': 44.08}

[✓] Successfully forwarded to ThingsBoard.

[✓] Received from Kafka: {'temperature': 24.6, 'humidity': 41.47}

[✓] Successfully forwarded to ThingsBoard.

[✓] Received from Kafka: {'temperature': 25.09, 'humidity': 43.98}

Publish Simulated Temperature/Humidity via HTTP
Create a new python script (http_publisher.py) with the code listed below, make the script executable, and replace

<DEVICE_ACCESS_TOKEN> with your actual token from ThingsBoard.

19 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

import requests
import json
import time
import random

url = "http://YOUR_THINGSBOARD_IP:8080/api/v1/<DEVICE_ACCESS_TOKEN>/telemetry"

while True:
 payload = {
 "temperature": round(random.uniform(20, 30), 2),
 "humidity": round(random.uniform(40, 70), 2)
 }
 headers = {'Content-Type': 'application/json'}
 response = requests.post(url, headers=headers, data=json.dumps(payload))
 print(f"HTTP {response.status_code} -> {payload}")
 time.sleep(5)

Follow the steps below to access the ThingsBoard token:

• Login to your ThingsBoard instance as System Admin or Tenant Admin.

• On the left menu, go to ☰ Devices.

• Select the device you're using or create a new one:

• Click "+" (plus) > Add new device.

• Enter a name like Temperature/Humidity, leave device type default, click Add.

• After the device is created:

• Click the device name to open it.

• Go to the "Details" tab.

• Scroll down or look for Access Token (on the right-side panel or near device credentials).

• Copy the Access Token — this is your DEVICE_ACCESS_TOKEN.

Create ThingsBoard Dashboard

• Navigate to: Devices → Your Device

• In the left panel, go to "Devices".

• Click on your device (the one associated with the access token used by your Kafka Consumer).

• Go to the "Latest Telemetry" tab, you should see temperature and humidity data arriving live.

Option 1. Add a Dashboard from Scratch

• Left Menu → Dashboards → click "+" (Add new dashboard)

• Name it: e.g., IoT Monitoring

• Open the dashboard → click "Edit" (pencil) → click "+" to add a widget

Option 2. Add Widget from Device

• While inside the device details page, click "Charts" → "+".

• Select widget type (e.g., “Timeseries Chart”)

• Select telemetry keys: temperature, humidity

• Add to existing dashboard or create new one.

Verify

Once added, the dashboard should begin plotting your incoming sensor values in real-time

20 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

Figure 2. ThingsBoard dashboards for IoT solutions on Roving Edge.

21 Deploying IoT Solutions with ThingsBoard, Kafka, and K3s Kubernetes on Oracle Roving Edge Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2025, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-

free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We

specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in

any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Some regulatory certifications or registrations to products or services referenced on this website are held by Cerner Corporation. Cerner Corporation is a wholly-owned subsidiary of Oracle. Cerner Corporation

is an ONC-certified health IT developer and a registered medical device manufacturer in the United States and other jurisdictions worldwide.

This document may include some forward-looking content for illustrative purposes only. Some products and features discussed are indicative of the products and features of a prospective future launch in the

United States only or elsewhere. Not all products and features discussed are currently offered for sale in the United States or elsewhere. Products and features of the actual offering may differ from those

discussed in this document and may vary from country to country. Any timelines contained in this document are indicative only. Timelines and product features may depend on regulatory approvals or

certification for individual products or features in the applicable country or region.

Author: Anderson Souza

	Purpose statement
	Introduction
	Architecture Overview
	Key Components:

	Solution Deployment
	Prerequisites
	Prepare the Oracle Linux 8.10 System
	Install K3s (Lightweight Kubernetes)
	Prepare for ThingsBoard Deployment
	Deploy ThingsBoard using Helm
	Access ThingsBoard UI via Public IP
	Install and Run Kafka (Broker) via Helm
	Deploy Kafka Producer
	Deploy Kafka Consumer
	Publish Simulated Temperature/Humidity via HTTP
	Create ThingsBoard Dashboard

