

Containerized Oracle Application

Deployment on Oracle Roving Edge
Version 1.0

Copyright © 2025, Oracle and/or its affiliates

Public

2 Containerized Oracle Application Deployment on Oracle Roving Edge Public

Purpose statement

The purpose of this solution paper is to present a validated approach for deploying Oracle enterprise applications in a

containerized architecture on Oracle Roving Edge Devices (REDs). Designed for cloud architects, DevOps engineers, and edge

computing teams, this guide enables secure, high-performance execution of Oracle applications, such as middleware,

databases, and custom workloads at the edge.

Disclaimer

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of

Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle software

license and service agreement, which has been executed and with which you agree to comply. This document and information

contained herein may not be disclosed, copied, reproduced or distributed to anyone outside Oracle without prior written

consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual

agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation and

upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality, and should

not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any features or

functionality described in this document remains at the sole discretion of Oracle. Due to the nature of the product

architecture, it may not be possible to safely include all features described in this document without risking significant

destabilization of the code.

This document may include some forward-looking content for illustrative purposes only. Some products and features discussed

are indicative of the products and features of a prospective future launch in the United States only or elsewhere. Not all

products and features discussed are currently offered for sale in the United States or elsewhere. Products and features of the

actual offering may differ from those discussed in this document and may vary from country to country. Any timelines

contained in this document are indicative only. Timelines and product features may depend on regulatory approvals or

certification for individual products or features in the applicable country or region.

3 Containerized Oracle Application Deployment on Oracle Roving Edge Public

Table of contents

Purpose statement 2

Introduction 4

Architecture Overview 5

Solution Deployment 6

Accessing Oracle Container Registry 10

Deploying Oracle Containerized Applications 12

Deploying NGINX Server from Docker Hub Repository 19

4 Containerized Oracle Application Deployment on Oracle Roving Edge Public

Introduction

Edge computing is revolutionizing the way enterprises run applications and services in real time, especially where cloud access

is constrained or unavailable. Oracle Roving Edge Devices (REDs) deliver cloud-grade compute, storage, and networking

capabilities in a portable, ruggedized form factor ideal for field deployments and tactical use cases.

This solution paper outlines the process of containerizing and deploying Oracle Applications on REDs using K3s, a lightweight

Kubernetes distribution optimized for resource-constrained environments. By leveraging Oracle Linux and RED’s secure edge

infrastructure, organizations can run critical applications, including Oracle middleware, databases, and analytics platforms

closer to where data is generated.

Note: This content is provided for informational purposes and self-supported guidance only. Consultancy or other assistance

related to the content is not covered under the Oracle Support contract or associated service requests. If you have questions or

additional needs, then please reach out to your Oracle Sales contact directly.

5 Containerized Oracle Application Deployment on Oracle Roving Edge Public

Architecture Overview

This solution leverages a lightweight, modular architecture designed specifically for edge computing environments by

deploying Oracle enterprise applications, such as Oracle SOA, or custom microservices on a K3s Kubernetes cluster running

locally on Oracle Roving Edge Devices (REDs). The goal is to enable secure, resilient, and cloud-independent operation of

mission-critical applications directly at the edge.

The deployment architecture consists of the following core components:

Oracle Roving Edge Device (RED)

Serves as the physical host (ruggedized or not), delivering secure, high-performance compute, storage, and networking

capabilities. RED runs Oracle Linux and is optimized to host containerized workloads and Kubernetes clusters, even in remote

or disconnected environments.

K3s Lightweight Kubernetes

A minimal, production-grade Kubernetes distribution installed directly on RED. K3s orchestrates the lifecycle of containerized

Oracle applications with low resource overhead, enabling rapid deployment, scaling, and monitoring of edge workloads.

Oracle Applications (Containerized)

Deployed as Docker containers orchestrated by K3s. Depending on the use case, the stack may include:

• Oracle Database: For local data persistence, caching, or synchronization with central systems.

• Oracle WebLogic or Java EE apps: For enterprise middleware services.

• Custom Microservices: For telemetry, analytics, APIs, or integrations.

• Optional Services: like NGINX, Grafana, or Prometheus for management, logging, or observability.

All services run locally on the RED, ensuring zero dependency on external cloud services or third-party infrastructure.

Key Benefits of This Architecture

• Cloud-independent operation: Applications run autonomously in low or no-connectivity environments.

• Secure and portable: Built on Oracle Linux with hardened configurations for field deployment.

• Optimized for resource-constrained environments: Minimal overhead with K3s and container-native design.

• Flexible application stack: Supports Oracle and third-party containers with full Kubernetes orchestration.

• Use cases: Ideal for tactical, industrial, and remote edge scenarios.

6 Containerized Oracle Application Deployment on Oracle Roving Edge Public

Figure 1. Architecture diagram of Oracle containerized applications running on Oracle Roving Edge

Solution Deployment

This section outlines the detailed steps to deploy Oracle Applications in containers using K3s on an Oracle Roving Edge Device

running Oracle Linux 8.10. The deployment utilizes K3s as a lightweight Kubernetes orchestrator and connects securely to the

Oracle Container Registry (OCR) to pull containerized Oracle applications such as Oracle Database, WebLogic Server, and

supporting services. The process begins by preparing the RED environment, installing K3s, authenticating with the Oracle

Container Registry, and deploying the desired Oracle applications as containers. This approach enables rapid provisioning,

localized application execution, and full-stack orchestration at the edge, which is ideal for disconnected or low-latency

environments.

Step 1. As root user, enable the Oracle Linux repositories, update the instance to the latest package releases, and check if the

basic packages are installed.

sudo dnf update -y
sudo dnf install -y oraclelinux-release-el8
sudo dnf install -y epel-release

Step2. Install K3s (Lightweight Kubernetes), verify the installation, and configure K3s to start on boot:

• Run the following command to install K3s: curl -sfL https://get.k3s.io | sh -

Listed below is the output of the command when successfully executed:

7 Containerized Oracle Application Deployment on Oracle Roving Edge Public

[INFO] Finding release for channel stable
[INFO] Using v1.32.4+k3s1 as release
[INFO] Downloading hash https://github.com/k3s-
io/k3s/releases/download/v1.32.4+k3s1/sha256sum-amd64.txt
[INFO] Downloading binary https://github.com/k3s-io/k3s/releases/download/v1.32.4+k3s1/k3s
[INFO] Verifying binary download
[INFO] Installing k3s to /usr/local/bin/k3s
[INFO] Finding available k3s-selinux versions
Rancher K3s Common (stable)

7.4 kB/s | 2.6 kB 00:00
Last metadata expiration check: 0:00:01 ago on Wed 14 May 2025 04:31:04 PM GMT.
Dependencies resolved.
===
===
===
====
 Package Architecture
Version
Repository Size
==

==
==

=============
Installing:
 k3s-selinux noarch
1.6-1.el8
rancher-k3s-common-stable 20 k
Installing dependencies:
container-selinux noarch
2:2.229.0-2.module+el8.10.0+90541+332b2aa7
ol8_appstream 69 k
Enabling module streams:
 container-tools
ol8

Transaction Summary
===
===
===
====
Install 2 Packages
Total download size: 90 k
Installed size: 161 k
Downloading Packages:
(1/2): k3s-selinux-1.6-1.el8.noarch.rpm
264 kB/s | 20 kB 00:00
(2/2): container-selinux-2.229.0-2.module+el8.10.0+90541+332b2aa7.noarch.rpm
203 kB/s | 69 kB 00:00

8 Containerized Oracle Application Deployment on Oracle Roving Edge Public

Total
258 kB/s | 90 kB 00:00
Rancher K3s Common (stable)
22 kB/s | 2.4 kB 00:00
Importing GPG key 0xE257814A:
 Userid : "Rancher (CI) <ci@rancher.com>"
 Fingerprint: C8CF F216 4551 26E9 B9C9 18BE 925E A29A E257 814A
 From : https://rpm.rancher.io/public.key
Key imported successfully
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction
 Preparing :

1/1
 Running scriptlet: container-selinux-2:2.229.0-2.module+el8.10.0+90541+332b2aa7.noarch
1/2
 Installing : container-selinux-2:2.229.0-2.module+el8.10.0+90541+332b2aa7.noarch
1/2
 Running scriptlet: container-selinux-2:2.229.0-2.module+el8.10.0+90541+332b2aa7.noarch
1/2
 Running scriptlet: k3s-selinux-1.6-1.el8.noarch
2/2
 Installing : k3s-selinux-1.6-1.el8.noarch
2/2
 Running scriptlet: k3s-selinux-1.6-1.el8.noarch
2/2
 Running scriptlet: container-selinux-2:2.229.0-2.module+el8.10.0+90541+332b2aa7.noarch
2/2
 Running scriptlet: k3s-selinux-1.6-1.el8.noarch
2/2
 Verifying : container-selinux-2:2.229.0-2.module+el8.10.0+90541+332b2aa7.noarch
1/2
 Verifying : k3s-selinux-1.6-1.el8.noarch
2/2

Installed:
 container-selinux-2:2.229.0-2.module+el8.10.0+90541+332b2aa7.noarch
k3s-selinux-1.6-1.el8.noarch

Complete!
[INFO] Creating /usr/local/bin/kubectl symlink to k3s
[INFO] Creating /usr/local/bin/crictl symlink to k3s
[INFO] Creating /usr/local/bin/ctr symlink to k3s
[INFO] Creating killall script /usr/local/bin/k3s-killall.sh
[INFO] Creating uninstall script /usr/local/bin/k3s-uninstall.sh
[INFO] env: Creating environment file /etc/systemd/system/k3s.service.env
[INFO] systemd: Creating service file /etc/systemd/system/k3s.service
[INFO] systemd: Enabling k3s unit
Created symlink /etc/systemd/system/multi-user.target.wants/k3s.service →
/etc/systemd/system/k3s.service.
[INFO] systemd: Starting k3s

• To ensure that the k3s command is accessible, update the root user's bash profile. As root user, add k3s

9 Containerized Oracle Application Deployment on Oracle Roving Edge Public

echo 'export PATH=$PATH:/usr/local/bin' >> ~/.bashrc
source /root/.bashrc

• As root user, run the following command to verify the K3s installation and the kubernetes nodes currently available,

up, and running.

systemctl status k3s

● k3s.service - Lightweight Kubernetes
 Loaded: loaded (/etc/systemd/system/k3s.service; enabled; vendor preset: disabled)
 Active: active (running) since Wed 2025-05-14 16:37:33 GMT; 3min 30s ago
 Docs: https://k3s.io
 Process: 16245 ExecStartPre=/sbin/modprobe overlay (code=exited, status=0/SUCCESS)
 Process: 16239 ExecStartPre=/sbin/modprobe br_netfilter (code=exited, status=0/SUCCESS)
 Process: 16236 ExecStartPre=/bin/sh -xc ! /usr/bin/systemctl is-enabled --quiet nm-cloud-
setup.service 2>/dev/null (code=exited, status=0/SUCCESS)
 Main PID: 16253 (k3s-server)
 Tasks: 146
 Memory: 1.5G
 CGroup: /system.slice/k3s.service
 ├─16253 /usr/local/bin/k3s server
 ├─16335 containerd
 ├─17405
/var/lib/rancher/k3s/data/e1730ceee3d97d63f58b7ccd96fe08638e972abfd3b1ebdf497b52572f85b316/bi
n/containerd-shim-runc-v2 -namespace k8s.io -id
cd203b62b2bec616c1a50679f667b886e48cb0a51b3fcec7de9012710ba19949 -address
/run/k3s/containerd/containerd.sock
 ├─17415
/var/lib/rancher/k3s/data/e1730ceee3d97d63f58b7ccd96fe08638e972abfd3b1ebdf497b52572f85b316/bi
n/containerd-shim-runc-v2 -namespace k8s.io -id
0682fc320cdfd0517b8b577a409d8579afc9bad306543e30306e3747943affb1 -address
/run/k3s/containerd/containerd.sock
 ├─17448
/var/lib/rancher/k3s/data/e1730ceee3d97d63f58b7ccd96fe08638e972abfd3b1ebdf497b52572f85b316/bi
n/containerd-shim-runc-v2 -namespace k8s.io -id
717501964f7b08129af01424573cc463e63f27b221d46286e68a2b1f9d2fa891 -address
/run/k3s/containerd/containerd.sock
 ├─18827
/var/lib/rancher/k3s/data/e1730ceee3d97d63f58b7ccd96fe08638e972abfd3b1ebdf497b52572f85b316/bi
n/containerd-shim-runc-v2 -namespace k8s.io -id
c30594ec747d082e79005b5cb83766a98717a92e8918b62d29ed9305a743ca14 -address
/run/k3s/containerd/containerd.sock
 └─18877
/var/lib/rancher/k3s/data/e1730ceee3d97d63f58b7ccd96fe08638e972abfd3b1ebdf497b52572f85b316/bi
n/containerd-shim-runc-v2 -namespace k8s.io -id
38dff38d1eb03ef7d90e67c97e643d4331407bd563be93fe321946f649778f4b -address
/run/k3s/containerd/containerd.sock

10 Containerized Oracle Application Deployment on Oracle Roving Edge Public

May 14 16:38:09 k3s k3s[16253]: I0514 16:38:09.402944 16253 resource_quota_monitor.go:227]
"QuotaMonitor created object count evaluator" resource="apibundles.hub.traefik.io"
May 14 16:38:09 k3s k3s[16253]: I0514 16:38:09.402967 16253 resource_quota_monitor.go:227]
"QuotaMonitor created object count evaluator" resource="ingressrouteudps.traefik.io"
May 14 16:38:09 k3s k3s[16253]: I0514 16:38:09.403309 16253 shared_informer.go:313] Waiting
for caches to sync for resource quota
May 14 16:38:09 k3s k3s[16253]: I0514 16:38:09.804536 16253 shared_informer.go:320] Caches
are synced for resource quota
May 14 16:38:09 k3s k3s[16253]: I0514 16:38:09.824913 16253 shared_informer.go:313] Waiting
for caches to sync for garbage collector
May 14 16:38:09 k3s k3s[16253]: I0514 16:38:09.925218 16253 shared_informer.go:320] Caches
are synced for garbage collector
May 14 16:38:18 k3s k3s[16253]: I0514 16:38:18.650025 16253 replica_set.go:679] "Finished
syncing" kind="ReplicaSet" key="kube-system/traefik-c98fdf6fb" duration="9.888711ms"
May 14 16:38:18 k3s k3s[16253]: I0514 16:38:18.650500 16253 replica_set.go:679] "Finished
syncing" kind="ReplicaSet" key="kube-system/traefik-c98fdf6fb" duration="69.594µs"
May 14 16:38:18 k3s k3s[16253]: I0514 16:38:18.659122 16253 event.go:389] "Event occurred"
object="kube-system/traefik" fieldPath="" kind="Service" apiVersion="v1" type="Normal"
reason="UpdatedLoadBalancer" message="Updated LoadBalancer with new IPs: [10.0.0.4] ->
[10.0.0.4]"
May 14 16:38:34 k3s k3s[16253]: I0514 16:38:34.530175 16253 range_allocator.go:247]
"Successfully synced" key="k3s"

• Run the following command to enable the K3s during the boot of the instance:

systemctl enable k3s

• Run the following command to check K3s cluster information:

k3s kubectl get nodes

NAME STATUS ROLES AGE VERSION
k3s Ready control-plane,master 6m14s v1.32.4+k3s1

• The output above means that the K3s cluster is up and running correctly. You have a single node named "k3s" that

acts as the control plane (master node), and it has been running without issues for about 6 minutes. The Kubernetes

version deployed by K3s is v1.32.4+k3s1.

Accessing Oracle Container Registry

• Go to Oracle Container Registry.

• Log in with your Oracle SSO account.

https://container-registry.oracle.com/

11 Containerized Oracle Application Deployment on Oracle Roving Edge Public

Figure 2. Architecture diagram of Oracle containerized applications running on Oracle Roving Edge

• Click on your username on the top lief toc the screen, then select Auth Token.

• On the Generate Secret Key screen, click Generate Secret Key, then copy it. This key will be utilized along with your

username to login on the Oracle Container Registry via podman in your Oracle Linux instance.

12 Containerized Oracle Application Deployment on Oracle Roving Edge Public

• In your Oracle Linux instance, login to the Oracle Container Registry using Podman:

docker login container-registry.oracle.com

• You will be prompted to enter your Oracle SSO username and password.

• Verify Login: After logging in, check your credentials using:

docker login container-registry.oracle.com
Username: your-email
Password:
Login Succeeded!

This command confirms that you are logged in to the registry.

Deploying Oracle Containerized Applications

As enterprises modernize their infrastructure, containerized application delivery has become essential for agility, portabili ty,

and operational efficiency. Oracle provides a robust portfolio of containerized applications, including Oracle Database,

WebLogic Server, and enterprise middleware all available via the Oracle Container Registry. This section introduces the

foundational steps to deploy these applications on K3s running on Roving Edge. As example, we will be deploying Oracle SOA

from Oracle Container Register and NGINX server from Docker hub repository.

13 Containerized Oracle Application Deployment on Oracle Roving Edge Public

NOTE: The Oracle Container Registry provides comprehensive documentation for deploying Oracle containerized

applications.

Running Oracle SOA Suite in containers

Sample configurations to facilitate installation, configuration, and environment setup for Oracle SOA Suite 12.2.1.4 or 14.1.2.

At the end of this configuration there will be at least two running containers:

• (Optional) Oracle Database container (only when RCU schema is created in a database running in a container)

• Oracle WebLogic Server Administration Server container

• Two Oracle WebLogic Server Managed Server containers (Oracle SOA Server or Oracle Service Bus Server)

To create the Podman network and run containers, follow these steps:

Create a network

In this configuration, the creation of a user-defined network will enable the communication between the containers just using

container names. For this setup we will use a user-defined network using bridge driver.

Create a user-defined network using the bridge driver:

$ podman network create -d bridge <network name>

For example:

$ podman network create -d bridge SOANet

Mount a host directory as a data volume

Data volumes are designed to persist data, independent of the container's lifecycle. Podman automatically creates volumes

when you specify a volume name with the -v option, without the need to predefine directories on the host. In this project, the

volumes will be used to store Database data files and WebLogic Server domain files. These volumes will be automatically

created and managed by Podman. The names of the volumes are specified in the podman run commands.

$ podman -d --name soadb -v soadb_vol:/opt/oracle/oradata

The default storage location for Podman volumes is determined by Podman's storage configuration. To identify the location of

a volume, run:

$ podman volume inspect <volume_name>

The Mountpoint entry should point to the location of the volume in the host.

Podman creates volumes with default permissions. Ensure that the container's oracle user has the necessary read/write/execute

permissions on the auto-created volume. This may require setting proper permissions or ownership using a post-creation

script, depending on your environment.

$ sudo chmod -R 777 $HOME/.local/shared/containers/storage/volumes/soadb_vol

14 Containerized Oracle Application Deployment on Oracle Roving Edge Public

To determine if a user already exists on your node system with uid:gid of 1000, run:

$ getent passwd 1000

If this command returns a username (which is the first field), you can skip the following useradd command. If not, create

the oracle user manually:

$ useradd -u 1000 -g 0 oracle

Create the database

You need to have a running database container or a database running on any machine. The database connection details are

required for creating SOA-specific RCU schemas while configuring the SOA domain. While using a 19.3.0.0 CDB/PDB DB,

ensure a PDB is used to load the schemas. RCU loading on a CDB is not supported.

The Oracle database server container requires custom configuration parameters for starting up the container. These custom

configuration parameters correspond to the data source parameters in the SOA image to connect to the database running in the

container.

To run the database container to host the RCU schemas:

• Add the following parameters to a db.env.txt file:

• ORACLE_SID=soadb

• ORACLE_PDB=soapdb

• ORACLE_PWD=Oradoc_db1

o ENABLE_ARCHIVELOG=true

• Enter the following command:

o $ podman run -d --name soadb --network=SOANet -p 1521:1521 -p 5500:5500 -v

soadb_vol:/opt/oracle/oradata --env-file ./db.env.txt container-

registry.oracle.com/database/enterprise:19.3.0.0

• Verify that the database is running and healthy. The STATUS field should show healthy in the output of podman ps.

Obtain the Oracle SOA Suite container image

Pull the required version of Oracle SOA Suite image available in the Oracle Container Registry and update all occurrences of

<REPLACE-WITH-RELEASE-VERSION> in the document with the exact tag value.

Create a container for the Administration Server

Start a container to launch the Administration Server from the image created using the steps above. The environment variables

used to configure the domain are defined in adminserver.env.list. Replace in adminserver.env.list the values for the Database

and WebLogic Server passwords.

Create an environment file adminserver.env.list:

CONNECTION_STRING=<Database container name>:<port#>/<ORACLE_PDB>

RCUPREFIX=<RCU_Prefix>

DB_PASSWORD=<database_sys_password>

DB_SCHEMA_PASSWORD=<soa-infra schema password>

ADMIN_PASSWORD=<admin_password>

DOMAIN_NAME=soainfra

https://container-registry.oracle.com/ords/ocr/ba/middleware/soasuite

15 Containerized Oracle Application Deployment on Oracle Roving Edge Public

DOMAIN_TYPE=<soa/osb/soaosb>

ADMIN_HOST=<Administration Server hostname>

ADMIN_PORT=<Node port number mapping Administration Server container port `7001`>

PERSISTENCE_STORE=<jdbc | file>

IMPORTANT: DOMAIN_TYPE must be carefully chosen and specified depending on the use case. It can't be changed once

you proceed. For Oracle SOA Suite domains, the supported domain types are soa, osb and soaosb.

• soa : Deploys a SOA Domain with Enterprise Scheduler (ESS)

• osb : Deploys an OSB Domain (Oracle Service Bus)

• soaosb : Deploys a Domain with SOA, OSB and Enterprise Scheduler (ESS)

For example:

CONNECTION_STRING=soadb:1521/soapdb

RCUPREFIX=SOA1

DB_PASSWORD=Your-password

DB_SCHEMA_PASSWORD= Your-password

ADMIN_PASSWORD= Your-password

DOMAIN_NAME=soainfra

DOMAIN_TYPE=soa

ADMIN_HOST=<Administration Server hostname>

ADMIN_PORT=7001

PERSISTENCE_STORE=jdbc

If PERSISTENCE_STORE is not specified, the default value is jdbc. When PERSISTENCE_STORE=jdbc, a JDBC persistence

store will be configured for all servers for TLOG + SOAJMS/UMSJMS servers. If PERSISTENCE_STORE=file, file-based

persistence stores will be used instead.

To start a Podman container with a SOA domain and the WebLogic Server Administration Server, use the podman

run command and pass the adminserver.env.list file.

For example:

$ podman run -it --name soaas --network=SOANet -p 7001:7001 -v soadomain_vol:/u01/oracle/user_projects --env-file

./adminserver.env.list container-registry.oracle.com/middleware/soasuite:<REPLACE-WITH-RELEASE-VERSION>

The options -it in the above command runs the container in interactive mode and you will be able to see the commands

running in the container. This includes the command for RCU creation, domain creation, and configuration, followed by

starting the Administration Server.

IMPORTANT: You need to wait until all the above commands are run before you can access the Administration Server Web

Console. The following lines highlight when the Administration Server is ready to be used:

INFO: Admin server is running

INFO: Admin server running, ready to start Managed Server

These lines indicate that the Administration Server started successfully with the name soaas. Mapping container port 7001 to

node port 7001 enables access to the WebLogic Server node outside of the local node. Connecting to the SOANet network

enables access to the DB container by its name (soadb).

16 Containerized Oracle Application Deployment on Oracle Roving Edge Public

To view the Administration Server logs, enter the following command:

$ podman logs -f \<Administration Server container name\>

Create SOA Managed Server containers

Note: These steps are required only for the soa and soaosb domain type. You can start containers to launch the SOA Managed

Servers from the image created.

Create an environment variables file specific to each Managed Server in the cluster in the SOA domain. For

example, soaserver1.env.list and soaserver2.env.list for a SOA cluster:

MANAGED_SERVER=<Managed Server name, either soa_server1 or soa_server2>

DOMAIN_NAME=soainfra

ADMIN_HOST=<Administration Server hostname>

ADMIN_PORT=<Node port number mapping Administration Server container port `7001`>

ADMIN_PASSWORD=<admin_password>

MANAGED_SERVER_CONTAINER=true

MANAGEDSERVER_PORT=<Container port number where Managed Server is running. Refer below note for details.>

IMPORTANT: In the Managed Servers environment variables file

• MANAGED_SERVER value must be soa_server1 or soa_server2 for the soa and soaosb domain type.

• ADMIN_PORT must match the node port mapping the Administration Server container port 7001.

• MANAGEDSERVER_PORT:

• For 12.2.1.4 must be 8001 for soa_server1 or 8002 for soa_server2

• For 14.1.2 must be 7003 for soa_server1 or 7005 for soa_server2.

Example, soaserver1.env.list for 12.2.1.4 will be:

MANAGED_SERVER=soa_server1

DOMAIN_NAME=soainfra

ADMIN_HOST=<Administration Server hostname>

ADMIN_PORT=7001

ADMIN_PASSWORD= Your-password

MANAGED_SERVER_CONTAINER=true

MANAGEDSERVER_PORT=8001

Example, soaserver1.env.list for 14.1.2 will be:

MANAGED_SERVER=soa_server1

DOMAIN_NAME=soainfra

ADMIN_HOST=<Administration Server hostname>

ADMIN_PORT=7001

ADMIN_PASSWORD= Your-password

MANAGED_SERVER_CONTAINER=true

MANAGEDSERVER_PORT=7003

To start a Podman container for the SOA server (for soa_server1), you can use the podman run command

passing soaserver1.env.list with correct port values.

17 Containerized Oracle Application Deployment on Oracle Roving Edge Public

For example, the command for 12.2.1.4 will be:

$ podman run -it --name soams1 --network=SOANet -p 8001:8001 -v soadomain_vol:/u01/oracle/user_projects --env-file

./soaserver1.env.list container-registry.oracle.com/middleware/soasuite:<REPLACE-WITH-RELEASE-VERSION>

"/u01/oracle/container-scripts/startMS.sh"

Similarly, for 14.1.2 command will be:

$ podman run -it --name soams1 --network=SOANet -p 7003:7003 -v soadomain_vol:/u01/oracle/user_projects --env-file

./soaserver1.env.list container-registry.oracle.com/middleware/soasuite:<REPLACE-WITH-RELEASE-VERSION>

"/u01/oracle/container-scripts/startMS.sh"

The following lines indicate when the SOA Managed Server is ready to be used:

INFO: Managed Server is running

INFO: Managed Server has been started

Once the Managed Server container is created, you can view the server logs:

$ podman logs -f \<Managed Server container name\>

Create Oracle Service Bus Managed Server containers

Note: These steps are required only for the osb and soaosb domain type.

You can start containers to launch the Oracle Service Bus Managed Servers from the image created.

Create an environment variables file specific to each Managed Server in the cluster in the SOA domain. For

example, osbserver1.env.list and osbserver2.env.list for an Oracle Service Bus cluster:

MANAGED_SERVER=<Managed Server name, either osb_server1 or osb_server2>

DOMAIN_NAME=soainfra

ADMIN_HOST=<Administration Server hostname>

ADMIN_PORT=<Node port number mapping Administration Server container port `7001`>

ADMIN_PASSWORD=<admin_password>

MANAGED_SERVER_CONTAINER=true

MANAGEDSERVER_PORT=<Container port number where Managed Server is running. Refer below note for details.>

IMPORTANT: In the Managed Servers environment variables file

• MANAGED_SERVER value must be osb_server1 or osb_server2 for the osb and soaosb domain type.

• ADMIN_PORT must match the node port mapping the Administration Server container port 7001 .

• MANAGEDSERVER_PORT:

• For 12.2.1.4 must be 9001 for osb_server1 or 9002 for osb_server2

• For 14.1.2 must be 8002 for osb_server1 or 8004 for osb_server2.

Example for 12.2.1.4 osbserver1.env.list is:

MANAGED_SERVER=osb_server1

DOMAIN_NAME=soainfra

ADMIN_HOST=<Administration Server hostname>

18 Containerized Oracle Application Deployment on Oracle Roving Edge Public

ADMIN_PORT=7001

ADMIN_PASSWORD= Your-password

MANAGED_SERVER_CONTAINER=true

MANAGEDSERVER_PORT=9001

Example for 14.1.2 osbserver1.env.list is:

MANAGED_SERVER=osb_server1

DOMAIN_NAME=soainfra

ADMIN_HOST=<Administration Server hostname>

ADMIN_PORT=7001

ADMIN_PASSWORD= Your-password

MANAGED_SERVER_CONTAINER=true

MANAGEDSERVER_PORT=8002

To start a Podman container for the Oracle Service Bus server (for osb_server1), you can use the podman run command

passing osbserver1.env.list.

For example, the command for 12.2.1.4 will be:

$ podman run -it --name osbms1 --network=SOANet -p 9001:9001 -v soadomain_vol:/u01/oracle/user_projects --env-file

./osbserver1.env.list container-registry.oracle.com/middleware/soasuite:<REPLACE-WITH-RELEASE-VERSION>

"/u01/oracle/container-scripts/startMS.sh"

And for 14.1.2 command will be:

$ podman run -it --name osbms1 --network=SOANet -p 8002:8002 -v soadomain_vol:/u01/oracle/user_projects --env-file

./osbserver1.env.list container-registry.oracle.com/middleware/soasuite:<REPLACE-WITH-RELEASE-VERSION>

"/u01/oracle/container-scripts/startMS.sh"

The following lines indicate when the Oracle Service Bus Managed Server is ready to be used:

INFO: Managed Server is running

INFO: Managed Server has been started

Once the Managed Server container is created, you can view the server logs:

$ podman logs -f \<Managed Server container name\>

Access the Consoles

Now you can access the following Consoles:

For 12.2.1.4:

• Administration Server Web Console at http://<hostname>:7001/console with weblogic/Your-password

credentials.

• EM Console at http://<hostname>:7001/em with weblogic/your-password credentials.

• SOA infra Console at http://<hostname>:8001/soa-infra with weblogic/your-password credentials.

• SOA infra Console at http://<hostname>:8002/soa-infra with weblogic/your-password credentials.

• Service Bus Console at http://<hostname>:7001/servicebus with weblogic/your-password credentials.

19 Containerized Oracle Application Deployment on Oracle Roving Edge Public

For 14.1.2:

• EM Console at http://<hostname>:7001/em with weblogic/your-password credentials.

• SOA infra Console at http://<hostname>:7003/soa-infra with weblogic/your-password credentials.

• SOA infra Console at http://<hostname>:7005/soa-infra with weblogic/your-password credentials.

• Service Bus Console at http://<hostname>:7001/servicebus with weblogic/your-password credentials.

Note: hostname is the FQDN of the host name where the container is running. Do not use 'localhost' for ADMIN_HOST. Use

the actual FQDN name of the host as ADMIN_HOST.

Clean up the environment

1. Stop and remove all running containers from the node where the container is running:

$ podman stop \<container name\>

$ podman rm \<container name\>

where containers are soadb, soaas, soams1, soams2, osbms1 and osbms2.

2. Clear the data volume:

 $ podman volume rm soadb_vol

 $ podman volume rm soadomain_vol

3. Remove the Podman network:

 $ podman network rm SOANet

Deploying NGINX Server from Docker Hub Repository

• Pull the NGINX docker image from the Docker Hub Repository

docker pull nginx

Using default tag: latest
Trying to pull repository docker.io/library/nginx ...
latest: Pulling from docker.io/library/nginx
61320b01ae5e: Pull complete
670a101d432b: Pull complete
405bd2df85b6: Pull complete
cc80efff8457: Pull complete
2b9310b2ee4b: Pull complete
6c4aa022e8e1: Pull complete
abddc69cb49d: Pull complete
Digest: sha256:fb39280b7b9eba5727c884a3c7810002e69e8f961cc373b89c92f14961d903a0
Status: Downloaded newer image for nginx:latest
nginx:latest

• Deploy the NGINX server in a container:

20 Containerized Oracle Application Deployment on Oracle Roving Edge Public

docker run -d --name nginx-server -p 8081:80 nginx

5bafad634e35ec7b3d631bc7d40a78e8d505687c90bc1611b65fb9da293315c9

Test locally: curl http://localhost:8081

Test via web browser:

http://Your-IP-address:8081/

http://localhost:8081/
http://your-ip-address:8081/

21 Containerized Oracle Application Deployment on Oracle Roving Edge Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2025, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-

free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We

specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in

any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Some regulatory certifications or registrations to products or services referenced on this website are held by Cerner Corporation. Cerner Corporation is a wholly-owned subsidiary of Oracle. Cerner Corporation

is an ONC-certified health IT developer and a registered medical device manufacturer in the United States and other jurisdictions worldwide.

This document may include some forward-looking content for illustrative purposes only. Some products and features discussed are indicative of the products and features of a prospective future launch in the

United States only or elsewhere. Not all products and features discussed are currently offered for sale in the United States or elsewhere. Products and features of the actual offering may differ from those

discussed in this document and may vary from country to country. Any timelines contained in this document are indicative only. Timelines and product features may depend on regulatory approvals or

certification for individual products or features in the applicable country or region.

Author: Anderson Souza

	Purpose statement
	Introduction
	Architecture Overview
	Solution Deployment
	Accessing Oracle Container Registry
	Deploying Oracle Containerized Applications
	Deploying NGINX Server from Docker Hub Repository

